Local a posteriori error estimates and adaptive control of pollution effects

Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H1-type local error indicators in a slightly larger subdomain, plus weighted L2-type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi-optimal meshes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 421–442, 2003

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[3]  Ivo Babuška,et al.  Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .

[4]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[6]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[7]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[8]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[11]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[12]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[15]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[16]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[17]  Jacob Fish,et al.  Adaptive global-local refinement strategy based on the interior error estimates of the h-method , 1994 .

[18]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .