Heuristic Search Planning with BDDs

In this paper we study traditional and enhanced BDD- based exploration procedures capable of handling large planning problems. On the one hand, reachability analysis and model checking have eventually approached AI-Planning. Unfortunately, they typi- cally rely on uninformed blind search. On the other hand, heuris- tic search and especially lower bound techniques have matured in effectively directing the exploration even for large problem spaces. Therefore, with heuristic symbolic search we address the unexplored middle ground between single state and symbolic planning engines to establish algorithms that can gain from both sides. To this end we implement and evaluate heuristics found in state-of-the-art heuristic single-state search planners.

[1]  Jonathan Schaeffer,et al.  Searching with Pattern Databases , 1996, Canadian Conference on AI.

[2]  Blai Bonet,et al.  Planning as Heuristic Search: New Results , 1999, ECP.

[3]  Blai Bonet,et al.  A Robust and Fast Action Selection Mechanism for Planning , 1997, AAAI/IAAI.

[4]  Ioannis P. Vlahavas,et al.  GRT: A Domain Independent Heuristic for STRIPS Worlds Based on Greedy Regression Tables , 1999, ECP.

[5]  Fausto Giunchiglia,et al.  Planning as Model Checking , 1999, ECP.

[6]  Jörg Hoffmann,et al.  On Reasonable and Forced Goal Orderings and their Use in an Agenda-Driven Planning Algorithm , 2000, J. Artif. Intell. Res..

[7]  Subbarao Kambhampati,et al.  Extracting Effective and Admissible State Space Heuristics from the Planning Graph , 2000, AAAI/IAAI.

[8]  Malte Helmert,et al.  Exhibiting Knowledge in Planning Problems to Minimize State Encoding Length , 1999, ECP.

[9]  Malte Helmert,et al.  On the Implementation of MIPS , 2000 .

[10]  Maria Fox,et al.  Automatic Synthesis and Use of Generic Types in Planning , 2000, AIPS.

[11]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[12]  Alexander Bockmayr,et al.  Integer Programs and Valid Inequalities for Planning Problems , 1999, ECP.

[13]  Frank Reffel,et al.  OBDDs in Heuristic Search , 1998, KI.

[14]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[15]  Fausto Giunchiglia,et al.  Planning via Model Checking: A Decision Procedure for AR , 1997, ECP.

[16]  Armin Biere,et al.  µcke - Efficient µ-Calculus Model Checking , 1997, CAV.

[17]  Alexander Reinefeld,et al.  Enhanced Iterative-Deepening Search , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Steffen Hölldobler,et al.  Solving the Entailment Problem in the Fluent Calculus Using Binary Decision Diagrams , 2000, Computational Logic.

[19]  Drew McDermott,et al.  A Heuristic Estimator for Means-Ends Analysis in Planning , 1996, AIPS.

[20]  Dana S. Nau,et al.  On the Use of Integer Programming Models in AI Planning , 1999, IJCAI.

[21]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[22]  Jj Org Hoomann A Heuristic for Domain Independent Planning and its Use in an Enforced Hill-climbing Algorithm , 2000 .

[23]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[24]  Paolo Traverso,et al.  Automatic OBDD-Based Generation of Universal Plans in Non-Deterministic Domains , 1998, AAAI/IAAI.

[25]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[26]  Jonathan Schaeffer,et al.  Pushing the limits: new developments in single-agent search , 1999 .

[27]  S. Edelkamp,et al.  Deterministic State Space Planning with BDDs , 1999 .

[28]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[29]  M. Fourman Propositional Planning , 2000 .

[30]  Olivier Coudert,et al.  Verification of Synchronous Sequential Machines Based on Symbolic Execution , 1989, Automatic Verification Methods for Finite State Systems.

[31]  Richard E. Korf,et al.  Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.

[32]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[33]  Jorg Homann A Heuristic for Domain Independent Planning and Its Use in an Enforced Hill-Climbing Algorithm , 2000 .

[34]  Randal E. Bryant,et al.  Symbolic Manipulation of Boolean Functions Using a Graphical Representation , 1985, 22nd ACM/IEEE Design Automation Conference.

[35]  David L. Dill,et al.  Trace theory for automatic hierarchical verification of speed-independent circuits , 1989, ACM distinguished dissertations.

[36]  Paolo Traverso,et al.  Strong Cyclic Planning Revisited , 1999, ECP.

[37]  Henry A. Kautz,et al.  State-space Planning by Integer Optimization , 1999, AAAI/IAAI.

[38]  Marco Roveri,et al.  Recent Advances in AI Planning , 1999, Lecture Notes in Computer Science.

[39]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[40]  Richard E. Korf,et al.  Finding Optimal Solutions to the Twenty-Four Puzzle , 1996, AAAI/IAAI, Vol. 2.

[41]  PlanningFrameworkRune M. Jensen,et al.  OBDD-based Deterministic Planning using the UMOP , 2000 .

[42]  Frank Reffel,et al.  Error Detection with Directed Symbolic Model Checking , 1999, World Congress on Formal Methods.

[43]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.