Design of suboptimal regulators for nonlinear systems

An optimal feedback control law is preferred for the regulation of a deterministic nonlinear system. In this paper, a practical, iterative design method leading to a sequence of suboptimal control laws with successively improved performance is presented. The design method requires the determination of an upper bound to the performance of each successive control law. This is obtained by solving a partial differential inequality by means of a linear programming technique. Robustness properties and the application of the design method to the control of a robot manipulator arm are also presented.