RabbitQCPlus 2.0: More Efficient and Versatile Quality Control for Sequencing Data.

[1]  B. Schmidt,et al.  CARE 2.0: reducing false-positive sequencing error corrections using machine learning , 2022, BMC Bioinformatics.

[2]  Daniel C. Koboldt,et al.  Best practices for variant calling in clinical sequencing , 2020, Genome medicine.

[3]  Bertil Schmidt,et al.  CARE: context-aware sequencing read error correction , 2020, Bioinform..

[4]  Bertil Schmidt,et al.  RabbitQC: high-speed scalable quality control for sequencing data , 2020, Bioinform..

[5]  Kun Sun,et al.  Ktrim: an extra-fast and accurate adapter- and quality-trimmer for sequencing data , 2020, Bioinform..

[6]  Mael Kerbiriou,et al.  Parallel Decompression of Gzip-Compressed Files and Random Access to DNA Sequences , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[7]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[8]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[9]  Wouter De Coster,et al.  NanoPack: visualizing and processing long-read sequencing data , 2018, bioRxiv.

[10]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[11]  Y. Peer,et al.  Evaluation of the impact of Illumina error correction tools on de novo genome assembly , 2017, BMC Bioinformatics.

[12]  Athanasios V. Vasilakos,et al.  Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges , 2017, Computational and structural biotechnology journal.

[13]  Bertil Schmidt,et al.  Next-generation sequencing: big data meets high performance computing. , 2017, Drug discovery today.

[14]  Jia Gu,et al.  AfterQC: automatic filtering, trimming, error removing and quality control for fastq data , 2017, BMC Bioinformatics.

[15]  James Clarke,et al.  Nanopore development at Oxford Nanopore , 2016, Nature Biotechnology.

[16]  P. Gong,et al.  A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis , 2016, Human Genomics.

[17]  Justin Chu,et al.  ntHash: recursive nucleotide hashing , 2016, Bioinform..

[18]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[19]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[20]  Onur Mutlu,et al.  Shifted Hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment verification in read mapping , 2015, Bioinform..

[21]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[22]  Yongchao Liu,et al.  Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data , 2013, Bioinform..

[23]  Jan Schröder,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .

[24]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  Andrei Z. Broder,et al.  On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[27]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.