Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor

The gas-phase reaction thermodynamics in the chemical vapor deposition system of preparing silicon carbide via methyltrichlorosilane pyrolysis is investigated with a relatively complete set of 226 species, in which the thermodynamic data of 163 species are evaluated in this work with accurate model chemistry G3(MP2) and G3//B3LYP calculations combined with standard statistical thermodynamics. The data include heat capacity (Cp,mθ), entropy (Smθ), enthalpy of formation (ΔfHmθ) and Gibbs free energy of formation (ΔfGmθ). All the results are consistent with the available reliable experiments. Based on these thermodynamic data, the equilibrium concentration distribution of the 226 possible species in 300–2,000 K is evaluated with the chemical equilibrium principle under a typical experimental condition. It is shown that the theoretical results are in very good agreement with the experiments. We conclude that the present work is instructive for experiments with different conditions.

[1]  J. Brennan Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic-matrix composite , 2000 .

[2]  A. Sanjurjo,et al.  Experimental thermochemistry of the SiCl and SiBr radicals; enthalpies of formation of species in the Si-Cl and Si-Br systems , 2003 .

[3]  K. J. Hüttinger,et al.  Microstructure of SiC deposited from methyltrichlorosilane , 2003 .

[4]  Y. Makarov,et al.  Effect of gas-phase nucleation on chemical vapor deposition of silicon carbide , 2000 .

[5]  M. Allendorf,et al.  Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods , 1998 .

[6]  F. Langlais,et al.  In Situ Optical Analysis of the Gas Phase during the Deposition of Silicon Carbide from Methyltrichlorosilane , 1996 .

[7]  Wei Jun,et al.  Systematic Comparison of Geometry Optimization on Inorganic Molecules , 2000 .

[8]  K. Balasubramanian CAS SCF/CI calculations of low-lying states and potential energy surfaces of Si3 , 1986 .

[9]  F. Langlais,et al.  Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3H2 gas precursor , 1995 .

[10]  Krishnan Raghavachari,et al.  GAUSSIAN-3 THEORY USING DENSITY FUNCTIONAL GEOMETRIES AND ZERO-POINT ENERGIES , 1999 .

[11]  K. J. Hüttinger,et al.  CVD of SiC from Methyltrichlorosilane. Part I: Deposition Rates , 2001 .

[12]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[13]  L. Radom,et al.  An evaluation of harmonic vibrational frequency scale factors. , 2007, The journal of physical chemistry. A.

[14]  Wang Zhenyi,et al.  Doubly contracted CI method and applications , 2004 .

[15]  F. Langlais,et al.  THE CVI-PROCESSING OF CERAMIC MATRIX COMPOSITES , 1989 .

[16]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[17]  S. V. Sotirchos,et al.  Steady‐State Multiplicity Phenomena in the Deposition of Silicon Carbide , 1998 .

[18]  M. Jacox Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. Supplement B , 1990 .

[19]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[20]  Gaohong Zhai,et al.  Doubly contracted CI method , 2004 .

[21]  A. D. McLean,et al.  Can the lowest two electronic states of Si2 be ordered , 1987 .

[22]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[23]  R. Fox,et al.  Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states. , 2007, The journal of physical chemistry. A.

[24]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[25]  Z. Slanina On thermodynamics of Si3(g) isomers , 1986 .

[26]  L. Curtiss,et al.  EVALUATION OF BOND ENERGIES TO CHEMICAL ACCURACY BY QUANTUM CHEMICAL TECHNIQUES , 1995 .

[27]  F. Langlais,et al.  Physicochemical properties of SiC-based ceramics deposited by low pressure chemical vapor deposition from CH3SiCl3H2 , 1995 .

[28]  S. Buljan,et al.  Ceramic whisker- and particulate-composites: properties, reliability, and applications , 1989 .

[29]  Robert J. Kee,et al.  A Model of Silicon Carbide Chemical Vapor Deposition , 1991 .

[30]  R. Fox,et al.  Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. Thermodynamics. , 2007, Journal of Physical Chemistry A.

[31]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[32]  H. Sone,et al.  In situ measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilane , 1999 .

[33]  Lemin Li,et al.  Parallelization of MRCI based on hole‐particle symmetry , 2005, J. Comput. Chem..

[34]  H. Schaefer,et al.  The ground state of Si3, two near degenerate isomers , 1985 .

[35]  Kehe Su,et al.  Evaluation of the Thermodynamic Data of CH3SiCl3 Based on Quantum Chemistry Calculations , 2006 .

[36]  R. Janoschek,et al.  Thermochemical properties from G3MP2B3 calculations, set-2: Free radicals with special consideration of CH2=CH-C.=CH2, cyclo-.C5H5, .CH2OOH, HO-.CO, and HC(O)O. , 2004 .

[37]  S. V. Sotirchos,et al.  Experimental study of atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane , 1999 .

[38]  P. Ho,et al.  Theoretical Study of the Thermochemistry of Molecules in the SiO-H System , 2001 .

[39]  Marilyn E. Jacox,et al.  VIBRATIONAL AND ELECTRONIC ENERGY LEVELS OF POLYATOMIC TRANSIENT MOLECULES , 1994 .

[40]  Zhengting Gan,et al.  A method to fast determine the coupling coefficients in CI calculation , 1999 .

[41]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[42]  Kehe Su,et al.  Investigation of thermodynamic properties of gaseous SiC(X 3Π and a 1Σ) with accurate model chemistry calculations , 2008 .

[43]  K. J. Hüttinger,et al.  CVD in Hot Wall Reactors—The Interaction Between Homogeneous Gas‐Phase and Heterogeneous Surface Reactions , 1998 .

[44]  D. A. Sullivan,et al.  Gas-Phase Ion and Neutral Thermochemistry , 1988 .

[45]  S. V. Sotirchos,et al.  Gravimetric Investigation of the Deposition of SiC Films Through Decomposition of Methyltrichlorosilane , 1995 .

[46]  M. Allendorf,et al.  Theoretical study of thermochemistry of molecules in the silicon-carbon-chlorine-hydrogn system , 1993 .

[47]  M. Allendorf,et al.  Unimolecular decomposition of methyltrichlorosilane. RRKM calculations , 1994 .

[48]  P. Armentrout,et al.  Energetics and mechanisms in the reaction of silicon(1+) with silicon tetrachloride. Thermochemistry of silicon monochloride, silicon chloride (SiCl1+), and silicon chloride (SiCl21+) , 1989 .

[49]  K. J. Hüttinger,et al.  CVD of SiC from Methyltrichlorosilane. Part II: Composition of the Gas Phase and the Deposit , 2001 .

[50]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[51]  F. Langlais,et al.  Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3H2 gas precursor , 1995 .

[52]  Lai-fei Cheng,et al.  High toughness, 3D textile, SiC/SiC composites by chemical vapor infiltration , 2001 .

[53]  Kehe Su,et al.  Thermodynamic properties of the most stable gaseous small silicon-carbon clusters in their ground states , 2008 .

[54]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[55]  P. Armentrout,et al.  Reactions of oxygen(+), argon(+), neon(+), and helium(+) with tetrachlorosilane: thermochemistry of chlorosilanes (SiClx+; X = 1-3) , 1991 .

[56]  G. Harris,et al.  Amorphous and Crystalline Silicon Carbide III , 1992 .

[57]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[58]  T. Yano,et al.  Fabrication of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing , 1998 .

[59]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[60]  Zhengting Gan,et al.  Hole–particle correspondence in CI calculations , 2003 .

[61]  IN-SITU FTIR EMISSION SPECTROSCOPY IN A TECHNOLOGICAL ENVIRONMENT: CHEMICAL VAPOUR INFILTRATION (CVI) OF SIC COMPOSITES , 1995 .

[62]  A. Kohyama,et al.  Microstructure analysis and strength evaluation of reaction sintered SiC/SiC composites , 2001 .

[63]  D D Wagman,et al.  Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)] , 1989 .

[64]  G. Diercksen,et al.  The structure of Si2C and Si3 , 1985 .

[65]  E. Fitzer,et al.  Carbon, carbide and silicide coatings , 1976 .

[66]  B. Riccardi,et al.  Development of 2D and 3D Hi-Nicalon fibres/SiC matrix composites manufactured by a combined CVI?PIP route , 2002 .

[67]  M. Allendorf,et al.  Theoretical study of the thermochemistry of molecules in the silicon-carbon-hydrogen system , 1992 .

[68]  L. Curtiss,et al.  Calculation of Accurate Bond Energies, Electron Affinities, and Ionization Energies , 1995 .

[69]  Kehe Su,et al.  Erratum to: “Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis” [Comput. Mater. Sci. 40 (2007) 504–524] , 2008 .

[70]  W. Fabian,et al.  Enthalpies of formation of small free radicals and stable intermediates : Interplay of experimental and theoretical values , 2006 .

[71]  S. H. Mousavipour,et al.  Kinetics and Mechanism of Pyrolysis of Methyltrichlorosilane , 2004 .

[72]  F. Langlais,et al.  Residence-time dependent kinetics of CVD growth of SiC in the system , 1996 .

[73]  S. V. Sotirchos,et al.  On the Homogeneous Chemistry of the Thermal Decomposition of Methyltrichlorosilane Thermodynamic Analysis and Kinetic Modeling , 1994 .

[74]  K. Luthra,et al.  Melt Infiltrated (MI) SiC/SiC Composites for Gas Turbine Applications , 2006 .

[75]  Kehe Su,et al.  Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis , 2007 .

[76]  H. Bernhard Schlegel,et al.  An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4-nCln (n = 0-4) , 1993 .

[77]  I. Golecki Rapid vapor-phase densification of refractory composites , 1997 .