Structural changes in blood vessels entering the growth plate during growth in rats

Summary. We observed the structural changes in blood vessels entering the growth plates of the femur and tibia of rats during growth using scanning electron microscopy. The penetrating vessels had blind endings which were bulbous at a time when rats showed rapid skeletal development. With subsequent slowing of development, the density of the vessels decreased and the blind endings became short stumps. These changes were more prominent in the proximal femur than in the distal femur and proximal tibia. The present study indicates an intimate relation between endochondral ossification in the growth plate and the structure of the penetrating vessels.Résumé. En utilisant la microscopie électronique à balayage les auteurs ont fait l’étude ultrastructurale des vaisseaux sanguins entrant dans les plaques de croissance des fémurs et des tibias chez des rats pendant la croissance. Les vaisseaux perforants avaient des boucles terminales de structure bulbeuse quand le développement squelettique des rats était intense. Avec le déclin du développement, la densité des vaisseaux a diminué avec des terminaisons en moignon. Ces changements ont été plus marqués au fémur proximal qu’au fémur distal et au tibia proximal. Cette étude montre un rapport intime entre l’ossification enchondrale des plaques de croissance et la structure des vaisseaux perforants.

[1]  W. Hunter,et al.  Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: A model of vascular arrest and angiogenesis renewed , 1991, The Anatomical record.

[2]  J. Folkman,et al.  Angiogenic factors. , 1987, Science.

[3]  A. Alberty,et al.  Effects of Physeal Distraction on the Vascular Supply of the Growth Area: A Microangiographical Study in Rabbits , 1993, Journal of pediatric orthopedics.

[4]  C. Brighton Structure and function of the growth plate. , 1978, Clinical orthopaedics and related research.

[5]  M. H. Ross Length of life and nutrition in the rat. , 1961, The Journal of nutrition.

[6]  J. Trueta The normal vascular anatomy of the human femoral head during growth. , 1957, The Journal of bone and joint surgery. British volume.

[7]  J. Pritchett Growth plate activity in the upper extremity. , 1991, Clinical orthopaedics and related research.

[8]  J. Ogden,et al.  Changing patterns of proximal femoral vascularity. , 1974, The Journal of bone and joint surgery. American volume.

[9]  C. Brighton,et al.  Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. , 1971, The Journal of bone and joint surgery. American volume.

[10]  W. Bunch,et al.  Pattern of Closure of the Proximal Femoral and Tibial Epiphyses in Man , 1983, Journal of pediatric orthopedics.

[11]  A. Lindner,et al.  On the morphology of the terminal microvasculature during endochondral ossification in rats. , 1991, Bone and mineral.

[12]  H. Mankin,et al.  Histochemical, metabolic and ultrastructural studies of the maturation zone of the rachitic rat epiphyseal plate. , 1973, Journal of Bone and Joint Surgery. American volume.

[13]  A. Pearson,et al.  The Laboratory Animal: Principles and Practice , 1971 .

[14]  W. Robert Harris,et al.  Injuries Involving the Epiphyseal Plate , 1963 .

[15]  M. Ehrlich,et al.  Chondrodiatasis in Rabbits: A Study of the Effect of Transphyseal Bone Lengthening on Cell Division, Synthetic Function, and Microcirculation in the Growth Plate , 1992, Journal of pediatric orthopedics.

[16]  F. Reinholt,et al.  The effect of manganese ingestion, phosphate depletion, and starvation on the morphology of the epiphyseal growth plate. A stereologic study. , 1985, Clinical orthopaedics and related research.

[17]  J TRUETA,et al.  The vascular contribution to osteogenesis. I. Studies by the injection method. , 1960, The Journal of bone and joint surgery. British volume.