On Sequential Random Distortion Testing of Non-Stationary Processes

Random distortion testing (RDT) addresses the problem of testing whether or not a random signal, $\Xi$, deviates by more than a specified tolerance, $\tau$, from a fixed value, $\xi_{0} \vert$ 1]. The test is nonparametric in the sense that the distribution of the signal under each hypothesis is assumed to be unknown. The signal is observed in independent and identically distributed (i.i.d) additive noise. The need to control the probabilities of false alarm and missed detection while reducing the number of samples required to make a decision leads to the SeqRDT approach. We show that under mild assumptions on the signal, SeqRDT will follow the properties desired by a sequential test. Simulations show that the SeqRDT approach leads to faster decision making compared to its fixed sam-ple counterpart Block-RDT [2] and is robust to model mismatches compared to the Sequential Probability Ratio Test (SPRT) [3] when the actual signal is a distorted version of the assumed signal especially at low Signal-to-Noise Ratios CSNRs).

[1]  Dominique Pastor,et al.  Random distortion testing with linear measurements , 2018, Signal Process..

[2]  Vinod Sharma,et al.  On Random Distortion Testing Based Sequential Non-Parametric Hypothesis Testing* , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[3]  E. L’her,et al.  Automatic detection of AutoPEEP during controlled mechanical ventilation , 2012, Biomedical engineering online.

[4]  Donald J. Wheeler,et al.  Understanding Statistical Process Control , 1986 .

[5]  S. Geer,et al.  Statistics for big data: A perspective , 2018 .

[6]  Peter Bühlmann,et al.  Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data , 2014, Proceedings of the IEEE.

[7]  Dominique Pastor,et al.  Robust statistical process control in Block-RDT framework , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Quang-Thang Nguyen,et al.  Contributions to Statistical Signal Processing with Applications in Biomedical Engineering. (Contributions au traitement statistique du signal avec des applications biomédicales) , 2012 .

[9]  Dominique Pastor,et al.  Random Distortion Testing and Optimality of Thresholding Tests , 2013, IEEE Transactions on Signal Processing.

[10]  T. Lai Asymptotic Optimality of Invariant Sequential Probability Ratio Tests , 1981 .

[11]  Vinod Sharma,et al.  Distributed nonparametric sequential spectrum sensing under electromagnetic interference , 2014, 2015 IEEE International Conference on Communications (ICC).

[12]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[13]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[14]  B. K. Ghosh,et al.  Handbook of sequential analysis , 1991 .

[15]  Dominique Pastor,et al.  A sharp upper bound for the probability of error of the likelihood ratio test for detecting signals in white Gaussian noise , 2002, IEEE Trans. Inf. Theory.

[16]  Z. Ying,et al.  Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses , 2014, Sequential analysis.

[17]  M. Kanefsky,et al.  Introduction to nonparametric detection with applications , 1977, Proceedings of the IEEE.

[18]  H Merabet,et al.  The design and analysis of sequential clinical trials , 2013 .

[19]  T. Lai SEQUENTIAL ANALYSIS: SOME CLASSICAL PROBLEMS AND NEW CHALLENGES , 2001 .

[20]  Vinod Sharma,et al.  Truncated Sequential Non-Parametric Hypothesis Testing Based on Random Distortion Testing , 2019, IEEE Transactions on Signal Processing.

[21]  Honghai Zhang,et al.  A Low-Complexity Sequential Spectrum Sensing Algorithm for Cognitive Radio , 2014, IEEE Journal on Selected Areas in Communications.

[22]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[23]  Shidong Zhou,et al.  On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall $Q$-Functions , 2010, IEEE Transactions on Information Theory.

[24]  M. Basseville,et al.  Sequential Analysis: Hypothesis Testing and Changepoint Detection , 2014 .

[25]  Pramod K. Varshney,et al.  Sequential Random Distortion Testing of Non-Stationary Processes , 2019, IEEE Transactions on Signal Processing.

[26]  T. Lai Likelihood Ratio Identities and Their Applications to Sequential Analysis , 2004 .

[27]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[28]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[29]  J. Norris Appendix: probability and measure , 1997 .