This electrode is best served cold—a reversible electrochemical lithiation of a gray cubic tin

[1]  C. Liang,et al.  Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance , 2018 .

[2]  F. Dumur,et al.  The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy , 2017 .

[3]  Jianchuang Wang,et al.  Effects of the volume changes and elastic-strain energies on the phase transition in the Li-Sn battery , 2016 .

[4]  Y. Ein‐Eli,et al.  In‐Situ Spectro–electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium–ion Battery , 2016 .

[5]  Pallab Barai,et al.  Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes , 2016 .

[6]  M. Winter,et al.  In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries , 2015 .

[7]  S. Manzhos,et al.  Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: An ab initio study including phonon contributions. , 2015, The Journal of chemical physics.

[8]  N. Oehl,et al.  Critical size for the β- to α-transformation in tin nanoparticles after lithium insertion and extraction , 2015 .

[9]  M. Winter,et al.  Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries , 2014, Nanotechnology.

[10]  Guozhen Shen,et al.  Three‐Dimensional Structural Engineering for Energy‐Storage Devices: From Microscope to Macroscope , 2014 .

[11]  Robert Kostecki,et al.  Distinct Solid‐Electrolyte‐Interphases on Sn (100) and (001) Electrodes Studied by Soft X‐Ray Spectroscopy , 2014 .

[12]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[13]  Jiangwei Wang,et al.  Structural Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling , 2014 .

[14]  Y. Cho,et al.  Phase evolution of tin nanocrystals in lithium ion batteries. , 2013, ACS nano.

[15]  S. Jung,et al.  Lithium intercalation behaviors in Ge and Sn crystalline surfaces. , 2013, Physical chemistry chemical physics : PCCP.

[16]  J. Cabana,et al.  Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. , 2013, Nano letters.

[17]  P. Kaghazchi Theoretical studies of lithium incorporation into α-Sn(100). , 2013, The Journal of chemical physics.

[18]  R. Kostecki,et al.  Interfacial processes at single-crystal β-Sn electrodes in organic carbonate electrolytes , 2011 .

[19]  Jaephil Cho,et al.  Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries , 2011 .

[20]  H. Sheu,et al.  The phase transformations and cycling performance of copper–tin alloy anode materials synthesized by sputtering , 2011 .

[21]  Leigang Xue,et al.  Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries , 2010 .

[22]  J. Tarascon,et al.  Decomposition of ethylene carbonate on electrodeposited metal thin film anode , 2010 .

[23]  C. Hunt,et al.  Time-lapse photography of the β-Sn/α-Sn allotropic transformation , 2009 .

[24]  E. Matsubara,et al.  Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries , 2008 .

[25]  J. Hassoun,et al.  The role of the interface of tin electrodes in lithium cells: An impedance study , 2007 .

[26]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[27]  B. Scrosati,et al.  A New Type of Lithium-ion Battery Based on Tin ElectroplatedNegative Electrodes , 2006, International Journal of Electrochemical Science.

[28]  M. Scherge,et al.  A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques , 2005, cond-mat/0512109.

[29]  Sangyoub Lee,et al.  Freezing transition of interfacial water at room temperature under electric fields. , 2005, Physical review letters.

[30]  A. Styrkas Mechanisms of the Allotropic Transition of Sn , 2003 .

[31]  J. Dahn,et al.  Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries , 2003 .

[32]  J. Dahn,et al.  The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM , 2003 .

[33]  Noriyuki Tamura,et al.  Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .

[34]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[35]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[36]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[37]  Stefano de Gironcoli,et al.  alpha beta phase transition in tin: A theoretical study based on density-functional perturbation theory , 1998 .

[38]  Berkowitz,et al.  Electric-field induced restructuring of water at a platinum-water interface: A molecular dynamics computer simulation. , 1995, Physical review letters.

[39]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[40]  K. Ojima,et al.  Gray tin observed by high-resolution electron microscopy , 1991 .

[41]  E. Whalley Cubic Ice in Nature , 1983 .