A Wideband Low-Power LC-DCO-Based Complex Dielectric Spectroscopy System in 0.18- $\mu \text{m}$ CMOS

A low-power integrated <italic>LC</italic>-oscillator-based broadband dielectric spectroscopy (BDS) system is presented. The real relative permittivity <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}^{\prime }$ </tex-math></inline-formula> is measured as a shift in the oscillator frequency using an on-chip frequency-to-digital converter. The imaginary relative permittivity <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}^{\prime \prime }$ </tex-math></inline-formula> increases the losses of the oscillator tank which mandates a higher dc biasing current to preserve the same oscillation amplitude. An amplitude-locked loop is used to fix the amplitude and linearize the relation between the oscillator bias current and <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}^{\prime \prime }$ </tex-math></inline-formula>. The proposed BDS system employs a sensing oscillator and a reference oscillator where correlated double sampling is used to mitigate the impact of flicker noise, temperature variations, and frequency drifts. A prototype is implemented in 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process with a total chip area of 6.24 mm<sup>2</sup> to operate in 1–6-GHz range using three dual bands <italic>LC</italic> oscillators. The total power consumption ranges from 10 to 24 mW depending on the operating frequency. The sensor measures complex permittivity within 2% accuracy for the real part <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}^{\prime }$ </tex-math></inline-formula> and 5% for the imaginary part <inline-formula> <tex-math notation="LaTeX">$\varepsilon _{r}^{\prime \prime }$ </tex-math></inline-formula>. The achieved standard deviation in the air is 2.1 ppm for frequency reading and 110 ppm for current reading.

[1]  Michael A. Suster,et al.  A Broadband Sensor Interface IC for Miniaturized Dielectric Spectroscopy From MHz to GHz , 2014, IEEE Journal of Solid-State Circuits.

[2]  Ali M. Niknejad,et al.  Oscillator-Based Reactance Sensors With Injection Locking for High-Throughput Flow Cytometry Using Microwave Dielectric Spectroscopy , 2016, IEEE Journal of Solid-State Circuits.

[3]  Steve Tung,et al.  A Label-free, Microfluidics and Interdigitated Array Microelectrode Based Impedance Biosensor in Combination with Nanoparticles Immunoseparation for Detection of Escherichia coli O157:H7 in Food Samples , 2007 .

[4]  Samuel Palermo,et al.  A Wide-Band Fully-Integrated CMOS Ring-Oscillator PLL-Based Complex Dielectric Spectroscopy System , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  A Warsinke,et al.  Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor. , 2015, The Analyst.

[6]  M. McPherson,et al.  Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity , 2016, Biosensors & bioelectronics.

[7]  Liang-Hung Lu,et al.  Analysis and Design of Wideband Injection-Locked Ring Oscillators With Multiple-Input Injection , 2007, IEEE Journal of Solid-State Circuits.

[8]  Chih-Kong Ken Yang,et al.  Design and Optimization of Multipath Ring Oscillators , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Kamran Entesari,et al.  A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer , 2012, IEEE Journal of Solid-State Circuits.

[10]  Andreas Hierlemann,et al.  Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. , 2014, Lab on a chip.

[11]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[12]  S. Gawad,et al.  Single cell dielectric spectroscopy , 2007 .

[13]  A. Shivola Self-consistency aspects of dielectric mixing theories , 1989 .

[14]  Ali Hajimiri,et al.  Phase Noise and Fundamental Sensitivity of Oscillator-Based Reactance Sensors , 2013, IEEE Transactions on Microwave Theory and Techniques.

[15]  A. Abidi,et al.  Varactor characteristics, oscillator tuning curves, and AM-FM conversion , 2003, IEEE J. Solid State Circuits.

[16]  Bodhisatwa Sadhu,et al.  A 3-band switched-inductor LC VCO and differential current re-use doubler achieving 0.7-to-11.6 GHz tuning range , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[17]  Ehsan Afshari,et al.  A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching , 2012, IEEE Journal of Solid-State Circuits.

[18]  Yuri Feldman,et al.  Broadband dielectric spectrometry of liquids and biosystems , 2006 .

[19]  Samuel Palermo,et al.  A CMOS Fractional- $N$ PLL-Based Microwave Chemical Sensor With 1.5% Permittivity Accuracy , 2013, IEEE Transactions on Microwave Theory and Techniques.

[20]  Kamran Entesari,et al.  A 0.62–10 GHz Complex Dielectric Spectroscopy System in CMOS , 2014, IEEE Transactions on Microwave Theory and Techniques.

[21]  P Bisegna,et al.  An impedance-based flow microcytometer for single cell morphology discrimination. , 2014, Lab on a chip.

[22]  Ali M. Niknejad,et al.  A 1–50 GHz dielectric spectroscopy biosensor with integrated receiver front-end in 65nm CMOS , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[23]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[24]  A.A. Abidi,et al.  Phase Noise and Jitter in CMOS Ring Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[25]  A. A. Maryott,et al.  Circular of the Bureau of Standards no. 589:: tables of dielectric dispersion data for pure liquids and dilute solutions , 1958 .

[26]  Michael A. Suster,et al.  A 9 MHz–2.4 GHz Fully Integrated Transceiver IC for a Microfluidic-CMOS Platform Dedicated to Miniaturized Dielectric Spectroscopy , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[27]  Minoru Fujishima,et al.  CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water With 120 and 60 GHz Oscillator Arrays , 2016, IEEE Journal of Solid-State Circuits.

[28]  D. Flandre,et al.  Capacitive Biosensing of Bacterial Cells: Sensitivity Optimization , 2016, IEEE Sensors Journal.

[29]  A. Sihvola Mixing Rules with Complex Dielectric Coefficients , 2000 .