Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced continuum theories including nonlinear effects and surface energy

[1]  I. Karimipour,et al.  Anti-plane analysis of an infinite plane with multiple cracks based on strain gradient theory , 2017 .

[2]  Y. Yue,et al.  Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity , 2017 .

[3]  M. Abadyan,et al.  Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force , 2016 .

[4]  M. Shaat,et al.  Size dependent and micromechanical modeling of strain gradient-based nanoparticle composite plates with surface elasticity , 2016 .

[5]  M. Shojaeian,et al.  Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges , 2016 .

[6]  R. Ansari,et al.  Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory , 2016 .

[7]  Masoud Tahani,et al.  Stability analysis of electrostatically actuated nano/micro-beams under the effect of van der Waals force, a semi-analytical approach , 2016, Commun. Nonlinear Sci. Numer. Simul..

[8]  M. Abadyan,et al.  Modeling the electromechanical behavior and instability threshold of NEMS bridge in electrolyte considering the size dependency and dispersion forces , 2015 .

[9]  I. Karimipour,et al.  Electromechanical instability of nanobridge in ionic liquid electrolyte media: influence of electrical double layer, dispersion forces and size effect , 2015, Indian Journal of Physics.

[10]  M. Abadyan,et al.  Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory , 2015 .

[11]  Y. Beni,et al.  A shear deformable cylindrical shell model based on couple stress theory , 2015 .

[12]  R. Ansari,et al.  Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory , 2015 .

[13]  R. Ansari,et al.  A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations , 2014 .

[14]  M. Abadyan,et al.  Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory , 2014 .

[15]  P. Malekzadeh,et al.  Nonlinear free vibration of skew nanoplates with surface and small scale effects , 2014 .

[16]  F. F. Mahmoud,et al.  A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects , 2014 .

[17]  F. F. Mahmoud,et al.  Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects , 2014 .

[18]  Lei Shen,et al.  A non-classical Mindlin plate finite element based on a modified couple stress theory , 2013 .

[19]  F. F. Mahmoud,et al.  Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects , 2013 .

[20]  M. Mahmoodi,et al.  A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory , 2013 .

[21]  F. F. Mahmoud,et al.  A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects , 2013, Zeitschrift für angewandte Mathematik und Physik.

[22]  Huu-Tai Thai,et al.  A size-dependent functionally graded Reddy plate model based on a modified couple stress theory , 2013 .

[23]  Huu-Tai Thai,et al.  SIZE-DEPENDENT FUNCTIONALLY GRADED KIRCHHOFF AND MINDLIN PLATE MODELS BASED ON A MODIFIED COUPLE STRESS THEORY , 2013 .

[24]  Mark A. Bradford,et al.  Bending, buckling and vibration of size-dependent functionally graded annular microplates , 2012 .

[25]  A. Khosrozadeh,et al.  Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces , 2012 .

[26]  Mohsen Asghari,et al.  Geometrically nonlinear micro-plate formulation based on the modified couple stress theory , 2012 .

[27]  Sritawat Kitipornchai,et al.  Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory , 2012 .

[28]  Junfeng Zhao,et al.  A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory , 2011 .

[29]  H. Noori,et al.  The size-dependent vibration analysis of micro-plates based on a modified couple stress theory , 2011 .

[30]  E. Jomehzadeh,et al.  A study on large amplitude vibration of multilayered graphene sheets , 2011 .

[31]  R. Rajapakse,et al.  Continuum Models Incorporating Surface Energy for Static and Dynamic Response of Nanoscale Beams , 2010, IEEE Transactions on Nanotechnology.

[32]  Behrooz Farshi,et al.  Size dependent dynamic analysis of nanoplates , 2010 .

[33]  S. Kitipornchai,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory , 2009 .

[34]  K. Lazopoulos On bending of strain gradient elastic micro-plates , 2009 .

[35]  Ghader Rezazadeh,et al.  Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading , 2009 .

[36]  George C. Tsiatas,et al.  A new Kirchhoff plate model based on a modified couple stress theory , 2009 .

[37]  W. G. Wolfer,et al.  Theories of surface elasticity for nanoscale objects , 2009 .

[38]  R. Naghdabadi,et al.  Analysis of micropolar elastic beams , 2009 .

[39]  陈伟琪 Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies , 2009 .

[40]  Jin He,et al.  Surface stress effect on bending resonance of nanowires with different boundary conditions , 2008 .

[41]  D. E. Beskos,et al.  Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates , 2008 .

[42]  Chaofeng Lü,et al.  Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations , 2008 .

[43]  H. Georgiadis,et al.  Distributed dislocation approach for cracks in couple-stress elasticity: shear modes , 2007 .

[44]  R. Naghdabadi,et al.  Energy pairs in the micropolar continuum , 2007 .

[45]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[46]  H. P. Lee,et al.  Thin plate theory including surface effects , 2006 .

[47]  Masoud K. Darabi,et al.  Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities , 2006 .

[48]  Andrew W. Mcfarland,et al.  Role of material microstructure in plate stiffness with relevance to microcantilever sensors , 2005 .

[49]  Vijay B. Shenoy,et al.  Atomistic calculations of elastic properties of metallic fcc crystal surfaces , 2005 .

[50]  Hua Li,et al.  A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump , 2004 .

[51]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[52]  Demosthenes Polyzos,et al.  Bending and stability analysis of gradient elastic beams , 2003 .

[53]  J. Pelesko,et al.  Modeling MEMS and NEMS , 2002 .

[54]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[55]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[56]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[57]  Olivier Français,et al.  NORMALIZED ABACUS FOR THE GLOBAL BEHAVIOR OF DIAPHRAGMS : PNEUMATIC, ELECTROSTATIC, PIEZOELECTRIC OR ELECTROMAGNETIC ACTUATION , 1999 .

[58]  Huajian Gao,et al.  An atomistic interpretation of interface stress , 1998 .

[59]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[60]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[61]  E. Aifantis,et al.  A simple approach to solve boundary-value problems in gradient elasticity , 1993 .

[62]  E. Aifantis,et al.  On the structure of the mode III crack-tip in gradient elasticity , 1992 .

[63]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[64]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[65]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[66]  P.‐J. Sell,et al.  The Surface Tension of Solids , 1966 .

[67]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[68]  Raymond D. Mindlin,et al.  Influence of couple-stresses on stress concentrations , 1963 .

[69]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .