Biological Inclusions in Amber from the Paleogene Chickaloon Formation of Alaska

ABSTRACT The Chickaloon Formation in south-central Alaska contains rich coal deposits dated very close to the Paleocene-Eocene boundary, immediately beneath which occur dispersed nodules of amber along with abundant remains of Metasequoia, dicots, and monocots. The nodules are small (less than 10 mm in length), nearly 10,000 of which were screened, yielding several inclusions of fungi and plant fragments, but mostly terrestrial arthropods: 29 specimens in 10 orders and 13 families. The fungi include resinicolous hyphae and a dark, multiseptate hyphomycete. Plants include wood/bark fragments and fibers, and the microphylls of a bryophyte (probably a moss, Musci). Among the arthropods are arachnids: mites (Acari: Oribatida), Pseudoscorpionida, and the bodies and a silken cocoon of spiders (Araneae). Insecta include Blattodea, Thysanoptera, Hemiptera (Heteroptera and Aphidoidea), Coleoptera (Dermestidae: Megatominae), Trichoptera, Diptera (Chironomidae: Tanypodinae), and Hymenoptera (Formicidae: Formicinae). Nymphal aphids predominate (65% of the arthropod individuals), which were probably feeding on the source tree, likely Metasequoia. There is a bias in preservation toward small arthropods (mean body length 0.75 mm) that are surface-dwelling (nonwinged) stages and taxa. Chickaloon amber contains the most northerly fossil records of pseudoscorpions, thrips, Dermestidae, and Cenozoic ants and mites, so the deposit is contributing unique data on high-latitude paleodiversity of the Paleogene hothouse earth.

[1]  S. B. Archibald,et al.  Two new species of fossil Eomerope (Mecoptera: Eomeropidae) from the Ypresian Okanagan Highlands, far-western North America, and Eocene Holarctic dispersal of the genus , 2018, The Canadian Entomologist.

[2]  D. Grimaldi,et al.  Publisher Correction: Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages , 2018, Nature Communications.

[3]  S. B. Archibald,et al.  Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America , 2018, The Canadian Entomologist.

[4]  J. Dunlop,et al.  The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones) , 2017 .

[5]  J. Martin,et al.  Exquisite preservation of a widespread filamentous microorganism in French Cretaceous ambers: Crucial for revising a controversial fossil , 2017 .

[6]  F. Baudin,et al.  Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene , 2017 .

[7]  J. Háva,et al.  The earliest Attagenus species (Coleoptera: Dermestidae: Attageninae) from Upper Cretaceous Burmese amber , 2017 .

[8]  A. Ślipiński,et al.  The Oldest Dermestid Beetle from the Middle Jurassic of China (Coleoptera: Dermestidae) , 2017, Annales Zoologici.

[9]  Phillip Barden Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages , 2017 .

[10]  J. Heinrichs,et al.  The first record of a bryophyte in Upper Cretaceous amber from Taimyr, northern Siberia: Taimyrobryum martynoviorum gen. et sp. nov. (Bryopsida) , 2016 .

[11]  D. Peris,et al.  New species from Late Cretaceous New Jersey amber and stasis in subfamily Attageninae (Insecta: Coleoptera: Dermestidae) , 2016, Journal of Paleontology.

[12]  P. S. Ward,et al.  A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. , 2016, Zootaxa.

[13]  M. Speranza,et al.  Cretaceous mycelia preserving fungal polysaccharides: taphonomic and paleoecological potential of microorganisms preserved in fossil resins , 2015 .

[14]  A. Rasnitsyn,et al.  The Ants (Hymenoptera: Formicidae) of Bol’shaya Svetlovodnaya (Late Eocene of Sikhote-Alin, Russian Far East) , 2015 .

[15]  H. Dörfelt,et al.  The enigmatic hyphomycete Torula sensu Caspary revisited , 2015 .

[16]  L. Hedenäs,et al.  An in situ preserved moss community in Eocene Baltic amber , 2014 .

[17]  L. Hedenäs,et al.  Bryophytes of the Burmese amber forest: Amending and expanding the circumscription of the Cretaceous moss genus Vetiplanaxis , 2014 .

[18]  M. Engel,et al.  A Diverse Paleobiota in Early Eocene Fushun Amber from China , 2014, Current Biology.

[19]  L. Grande,et al.  Paleoenvironment and paleoecology of a Late Paleocene high-latitude terrestrial succession, Arkose Ridge Formation at Box Canyon, southern Talkeetna Mountains, Alaska , 2014 .

[20]  J. Reitner,et al.  Amber fossils of sooty moulds , 2014 .

[21]  E. Sidorchuk A new technique for preparation of small-sized amber samples with application to mites , 2013 .

[22]  R. Preziosi,et al.  Estimating Fossil ant Species Richness in Eocene Baltic Amber , 2013 .

[23]  J. Rikkinen,et al.  Stuck in time – a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber , 2012, Fungal Diversity.

[24]  H. Kerp,et al.  Oldest known mosses discovered in Mississippian (late Visean) strata of Germany , 2012 .

[25]  D. Greenwood,et al.  Life at the top of the greenhouse Eocene world--A review of the Eocene flora and vertebrate fauna from Canada's High Arctic , 2012 .

[26]  C. Bässler,et al.  Fossil Thrips of the Family Uzelothripidae Suggest 53 Million Years of Morphological and Ecological Stability , 2011 .

[27]  R. A. Norton,et al.  The fossil mite family Archaeorchestidae (Acari, Oribatida) II: redescription of Plategeocranus sulcatus and family-group relationships , 2011 .

[28]  Nancy E. Parker,et al.  PALEOCLIMATIC AND PALEOECOLOGICAL IMPLICATIONS OF A PALEOCENE–EOCENE FOSSIL LEAF ASSEMBLAGE, CHICKALOON FORMATION, ALASKA , 2011 .

[29]  P. Craig Evolution of Fossil Ecosystems Fossil Ecosystems of North America. A Guide to the Sites and their Extraordinary Biotas Fossil Behavior Compendium Biodiversity of Fossils in Amber from the Major World Deposits , 2011 .

[30]  F. A. McInerney,et al.  The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future , 2011 .

[31]  R. A. Norton,et al.  Redescription of the fossil oribatid mite Scutoribates perornatus , with implications for systematics of Unduloribatidae (Acari: Oribatida) , 2010 .

[32]  D. Grimaldi,et al.  Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India , 2010, Proceedings of the National Academy of Sciences.

[33]  Christopher J. Williams,et al.  Fossil wood in coal-forming environments of the late Paleocene–early Eocene Chickaloon Formation , 2010 .

[34]  P. Selden,et al.  Fossil spiders , 2010, Biological reviews of the Cambridge Philosophical Society.

[35]  E. Peñalver,et al.  Modern thrips families Thripidae and Phlaeothripidae in Early Cretaceous amber (Insecta: Thysanoptera) , 2010 .

[36]  S. Shattuck,et al.  Phylogeny and taxonomy of the Prenolepis genus‐group of ants (Hymenoptera: Formicidae) , 2010 .

[37]  S. Hasiotis,et al.  Transient dwarfism of soil fauna during the Paleocene–Eocene Thermal Maximum , 2009, Proceedings of the National Academy of Sciences.

[38]  P. Selden,et al.  A Review of the Fossil Record of Spiders (Araneae) with Special Reference to Africa, and Description of a New Specimen from the Triassic Molteno Formation of South Africa , 2009 .

[39]  V. Girard,et al.  Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France , 2009 .

[40]  P. Tafforeau,et al.  New beetles of Polyphaga (Coleoptera, Polyphaga) from Lower Cretaceous Lebanese amber , 2009 .

[41]  N. Bell,et al.  Vetiplanaxis pyrrhobryoides, a new fossil moss genus and species from Middle Cretaceous Burmese amber , 2007 .

[42]  R. A. Norton First record of Collohmannia (C. schusteri n. sp) and Hermannia (H. sellnicki n. sp) from baltic amber, with notes on sellnick’s genera of fossil oribatid mites (Acari: Oribatida) , 2006 .

[43]  J. McHugh,et al.  A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology , 2006 .

[44]  A. Herrmann,et al.  New fossil dermestid beetles (Coleoptera: Dermestidae) from the Baltic amber , 2006 .

[45]  J. Frahm,et al.  A New Contribution to the Moss Flora of Dominican Amber , 2005 .

[46]  E. Ragazzi,et al.  Early Eocene amber from the ``Pesciara di Bolca'' (Lessini Mountains, Northern Italy) , 2005 .

[47]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[48]  Ursula Schäfer,et al.  LEPTOTRICHITES RESINATUS NEW GENUS AND SPECIES: A FOSSIL SHEATHED BACTERIUM IN ALPINE CRETACEOUS AMBER , 2005, Journal of Paleontology.

[49]  D. Grimaldi,et al.  MESOZOIC THRIPS AND EARLY EVOLUTION OF THE ORDER THYSANOPTERA (INSECTA) , 2004 .

[50]  A. Nel,et al.  The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin , 2004 .

[51]  D. Grimaldi,et al.  A New Rock Crawler in Baltic Amber, with Comments on the Order(Mantophasmatodea: Mantophasmatidae) , 2004 .

[52]  P. Selden,et al.  RESISTANCE OF SPIDERS TO CRETACEOUS‐TERTIARY EXTINCTION EVENTS , 2003, Evolution; international journal of organic evolution.

[53]  P. Gingerich Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming , 2003 .

[54]  D. Grimaldi,et al.  A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Grimaldi,et al.  Amber from Upper Cretaceous through Paleocene strata of the Hanna Basin, Wyoming, with evidence for source and taphonomy of fossil resins , 2000 .

[56]  Mark V. Lomolino,et al.  Ecology’s most general, yet protean 1 pattern: the species‐area relationship , 2000 .

[57]  G. Dickens,et al.  The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. , 1999, Science.

[58]  Corfield,et al.  Mechanisms of climate warming at the end of the paleocene , 1999, Science.

[59]  G. Poinar,et al.  NEW AMBER DEPOSIT PROVIDES EVIDENCE OF EARLY PALEOGENE EXTINCTIONS, PALEOCLIMATES, AND PAST DISTRIBUTIONS , 1999, The Canadian Entomologist.

[60]  J. Rust,et al.  Giant ants from the Paleogene of Denmark with a discussion of the fossil history and early evolution of ants (Hymenoptera: Formicidae) , 1999 .

[61]  C. Labandeira,et al.  Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests , 1997 .

[62]  R. Zack Catalogue of the Fossil Flies of the World (Insecta: Diptera) , 1996 .

[63]  B. LePage,et al.  The nature and fate of natural resins in the geosphere VI. Analysis of fossil resins from Axel Heiberg Island Canadian Arctic , 1995 .

[64]  E. Pike Amber taphonomy and collecting biases , 1993 .

[65]  O. Heie,et al.  NEW APHIDS IN CRETACEOUS AMBER FROM ALBERTA (INSECTA, HOMOPTERA) , 1992, The Canadian Entomologist.

[66]  W. Schawaller,et al.  The first paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida) , 1991 .

[67]  W. Shear,et al.  Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York , 1988, Journal of Paleontology.

[68]  T. Gentzis,et al.  Depositional Setting, Determined by Organic Petrography, of the Middle Eocene Hat Creek No. 2 Coal Deposit, British Columbia, Canada , 1987 .

[69]  and D A Krivolutsky,et al.  Fossil Oribatid Mites , 1986 .

[70]  G. Mustoe Eocene amber from the Pacific Coast of North America , 1985 .

[71]  C. Naeser,et al.  Radiometric age of the Chickaloon Formation of south-central Alaska: Location of the Paleocene-Eocene boundary , 1984 .

[72]  S. G. Larsson Baltic Amber: A Palaeobiological Study , 1978 .

[73]  H. Spangler,et al.  The Hastate Setae of Certain Derniestid Larvae: an Entangling Defense Mechanism , 1969 .

[74]  W. Richards Systematics of Fossil Aphids From Canadian Amber (Homoptera: Aphididae) , 1966, The Canadian Entomologist.

[75]  D. Hopkins,et al.  Tertiary Stratigraphy and Paleobotany of the Cook Inlet Region, Alaska , 1966 .

[76]  R. Macarthur,et al.  AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY , 1963 .