Global Dynamics in the Poincaré ball of the Chen System having Invariant Algebraic Surfaces
暂无分享,去创建一个
[1] Hiroshi Kokubu,et al. Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .
[2] Jaume Llibre,et al. Global dynamics of the Rikitake system , 2009 .
[3] Xiang Zhang,et al. Darboux Polynomials and Algebraic Integrability of the Chen System , 2007, Int. J. Bifurc. Chaos.
[4] Jaume Llibre,et al. On the global dynamics of the Rabinovich system , 2008 .
[5] Marcelo Messias,et al. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .
[6] Jaume Llibre,et al. Bounded polynomial vector fields , 1990 .
[7] Marcelo Messias,et al. Bifurcation analysis of a new Lorenz-like chaotic system , 2008 .
[8] Xiang Zhang,et al. The Chen System Having an Invariant Algebraic Surface , 2008, Int. J. Bifurc. Chaos.
[9] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[10] Jaume Llibre,et al. Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.
[11] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[12] Jaume Llibre,et al. Polynomial First integrals for the Chen and Lü Systems , 2012, Int. J. Bifurc. Chaos.
[13] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[14] J. Llibre,et al. Periodic orbits for a class of reversible quadratic vector field on R-3 , 2007 .