Trends and Application of Data Science in Bioinformatics

[1]  N. Siva 1000 Genomes project , 2008, Nature Biotechnology.

[2]  Peter J. Tonellato,et al.  Cloud computing for comparative genomics , 2010, BMC Bioinformatics.

[3]  Lawrence B. Holder,et al.  Machine learning for epigenetics and future medical applications , 2017, Epigenetics.

[4]  Michael Q. Zhang,et al.  Bioinformatics Original Paper Predicting Methylation Status of Cpg Islands in the Human Brain , 2022 .

[5]  Byunghan Lee,et al.  Deep learning in bioinformatics , 2016, Briefings Bioinform..

[6]  Jens Stoye,et al.  MeltDB: a software platform for the analysis and integration of metabolomics experiment data , 2008, Bioinform..

[7]  Roy D. Sleator,et al.  'Big data', Hadoop and cloud computing in genomics , 2013, J. Biomed. Informatics.

[8]  Michael Q. Zhang,et al.  Computational prediction of methylation status in human genomic sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[10]  Dong Xu,et al.  Bioinformatics and its applications in plant biology. , 2006, Annual review of plant biology.

[11]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[12]  Arnon Rosenthal,et al.  Methodological Review: Cloud computing: A new business paradigm for biomedical information sharing , 2010 .

[13]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[14]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[15]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[16]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[17]  Kamal Kishore,et al.  methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data , 2015, BMC Bioinformatics.

[18]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[19]  L. Stein The case for cloud computing in genome informatics , 2010, Genome Biology.

[20]  Thomas Lengauer,et al.  CpG Island Mapping by Epigenome Prediction , 2007, PLoS Comput. Biol..

[21]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[22]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[23]  Kara Dolinski,et al.  Implications of Big Data for cell biology , 2015, Molecular biology of the cell.

[24]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[25]  Hui Jiang,et al.  rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data , 2015, Bioinform..

[26]  David S. Wishart,et al.  MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids , 2008, BMC Bioinformatics.

[27]  Xing Gao,et al.  Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites , 2019, Neurocomputing.

[28]  Timothy M. D. Ebbels,et al.  Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA , 2011 .

[29]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[30]  Xing-Ming Zhao,et al.  DeepPhos: prediction of protein phosphorylation sites with deep learning , 2019, Bioinform..

[31]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[32]  Guang-Zhong Yang,et al.  Deep Learning for Health Informatics , 2017, IEEE Journal of Biomedical and Health Informatics.

[33]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[34]  Torsten Schwede,et al.  Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective , 2009, Electrophoresis.

[35]  Joaquín Dopazo,et al.  Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data , 2010, Bioinform..

[36]  Heeseung Jo,et al.  Faster single-end alignment generation utilizing multi-thread for BWA. , 2015, Bio-medical materials and engineering.

[37]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[38]  Ole Winther,et al.  An introduction to deep learning on biological sequence data: examples and solutions , 2017, Bioinform..

[39]  Gabi Kastenmüller,et al.  metaP-Server: A Web-Based Metabolomics Data Analysis Tool , 2010, Journal of biomedicine & biotechnology.

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[42]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[43]  Yan Xu,et al.  DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins , 2019, BMC Bioinformatics.

[44]  David L. Tabb,et al.  Protein Identification by SEQUEST , 2001 .

[45]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[46]  Stefano Lonardi,et al.  BRAT-BW: efficient and accurate mapping of bisulfite-treated reads , 2012, Bioinform..

[47]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[48]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[49]  Brent Pedersen,et al.  MethylCoder: software pipeline for bisulfite-treated sequences , 2011, Bioinform..

[50]  J. Landolin,et al.  Assembling large genomes with single-molecule sequencing and locality-sensitive hashing , 2014, Nature Biotechnology.

[51]  G. S. Sharvani,et al.  Emerging trend of big data analytics in bioinformatics: a literature review , 2018, Int. J. Bioinform. Res. Appl..

[52]  Christophe Geourjon,et al.  SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments , 1995, Comput. Appl. Biosci..

[53]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[54]  Elisa Mori,et al.  PARPST: a PARallel algorithm to find peptide sequence tags , 2008, BMC Bioinformatics.

[55]  Altug Akay,et al.  Deep Learning: Current and Emerging Applications in Medicine and Technology , 2019, IEEE Journal of Biomedical and Health Informatics.

[56]  Fabian J Theis,et al.  Single cells make big data: New challenges and opportunities in transcriptomics , 2017 .

[57]  Liliana Florea,et al.  Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads , 2015, GigaScience.

[58]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[59]  Sam Forster,et al.  RNA-eXpress annotates novel transcript features in RNA-seq data , 2013, Bioinform..

[60]  Qiang Kou,et al.  TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization , 2016, Bioinform..

[61]  William Stafford Noble,et al.  Nucleosome positioning signals in genomic DNA. , 2007, Genome research.

[62]  Wenyu Wang,et al.  Making Sense of the Epigenome Using Data Integration Approaches , 2019, Front. Pharmacol..

[63]  Christophe Combet,et al.  Geno3D: automatic comparative molecular modelling of protein , 2002, Bioinform..

[64]  Ravi Kumar,et al.  Impact of Biological Big Data in Bioinformatics , 2014 .

[65]  N. Tamamaki,et al.  Method for single-cell microarray analysis and application to gene-expression profiling of GABAergic neuron progenitors , 2008, Neuroscience Research.

[66]  Carole A. Goble,et al.  The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud , 2013, Nucleic Acids Res..

[67]  Peter J. Tonellato,et al.  Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup , 2010, Evolutionary bioinformatics online.

[68]  Jianguo Xia,et al.  Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis , 2016, Current protocols in bioinformatics.

[69]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[70]  Pedro Mendes,et al.  Bioinformatics Approaches to Integrate Metabolomics and Other Systems Biology Data , 2006 .

[71]  Moustafa Ghanem,et al.  Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support , 2012, BMC Bioinformatics.

[72]  Chris Williams,et al.  RNA-SeQC: RNA-seq metrics for quality control and process optimization , 2012, Bioinform..

[73]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[74]  Lan Huang,et al.  Comprehensive Analysis of a Multidimensional Liquid Chromatography Mass Spectrometry Dataset Acquired on a Quadrupole Selecting, Quadrupole Collision Cell, Time-of-flight Mass Spectrometer , 2005, Molecular & Cellular Proteomics.

[75]  Eva K. Lee,et al.  Predicting aberrant CpG island methylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Mobasheri,et al.  Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. , 2013, Omics : a journal of integrative biology.

[77]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[78]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[79]  Lewis Y. Geer,et al.  DBParser: web-based software for shotgun proteomic data analyses. , 2004, Journal of proteome research.

[80]  A. Harvey Millar,et al.  The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets , 2010, BMC Bioinformatics.

[81]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[82]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .

[83]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..