A simpleC*-algebra with a finite and an infinite projection

An example is given of a simple, unital C*-algebra which contains an infinite and a non-zero finite projection. This C*-algebra is also an example of an infinite simple C*-algebra which is not purely infinite. A corner of this C*-algebra is a finite, simple, unital C*-algebra which is not stably finite. Our example shows that the type decomposition for von Neumann factors does not carry over to simple C*-algebras. Added March 2002: We also give an example of a simple, separable, nuclear C*-algebra in the UCT class which contains an infinite and a non-zero finite projection. This nuclear C*-algebra arises as a crossed product of an inductive limit of type I C*-algebras by an action of the integers.

[1]  E. Kirchberg,et al.  Non-simple Purely Innnite C -algebras , 1999 .

[2]  H. O. Erdin Characteristic Classes , 2004 .

[3]  J. Villadsen On the stable rank of simple C*-algebras , 1999 .

[4]  Mikael Rørdam,et al.  Classification of Nuclear C*-Algebras. Entropy in Operator Algebras , 2001 .

[5]  J. Villadsen,et al.  Simple C*-Algebras with Perforation , 1998 .

[6]  B. Blackadar A simple *-algebra with no nontrivial projections , 1980 .

[7]  S. Wassermann Exact C*-algebras and related topics , 1994 .

[8]  B. Blackadar,et al.  The Structure of Stable Algebraically Simple C*-Algebras , 1982 .

[9]  A finite but not stably finite *-algebra , 1986 .

[10]  Projections in Free Product C*-algebras , 1997, funct-an/9702016.

[11]  APPLICATIONS OF FREE ENTROPY TO FINITE VON NEUMANN ALGEBRAS, II , 1998 .

[12]  E. Kirchberg,et al.  Infinite Non-simple C*-Algebras: Absorbing the Cuntz Algebra O∞ , 2002 .

[13]  V. Paulsen HILBERT C*‐MODULES: A TOOLKIT FOR OPERATOR ALGEBRAISTS (London Mathematical Society Lecture Note Series 210) , 1997 .

[14]  E. Christopher Lance,et al.  Hilbert C*-Modules: Stabilisation or absorption , 1995 .

[15]  Mikael Rørdam,et al.  Classification of Nuclear, Simple C*-algebras , 2002 .

[16]  Mikael Rørdam,et al.  An Introduction to K -Theory for C *-Algebras: The K 0-Group of a Unital C *-Algebra , 2000 .

[17]  D. Avitzour Free products of *-algebras , 1982 .

[18]  J. Cuntz The structure of multiplication and addition in simple $C^*$-algebras. , 1977 .

[19]  P. Cohn Free rings and their relations , 1973 .

[20]  Joachim Cuntz,et al.  SimpleC*-algebra generated by isometries , 1977 .

[21]  A. Kishimoto Outer automorphisms and reduced crossed products of simpleC*-algebras , 1981 .

[22]  M. Rørdam Classification of Certain Infinite Simple C*-Algebras , 1995 .

[23]  Xinhui Hongbing Jiang,et al.  On a simple unital projectionless C*-algebra , 1999 .

[24]  G. Pedersen,et al.  Applications of the Connes Spectrum to C∗-dynamical systems, III , 1978 .

[25]  N. Christopher Phillips A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1 , 1995 .

[26]  Eberhard Kirchberg,et al.  Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren , 2000 .

[27]  D. Avitzour Free Products of C ∗ -Algebras , 1982 .

[28]  A. Connes,et al.  An analogue of the thom isomorphism for crossed products of a C∗ algebra by an action of R , 1981 .

[29]  James Glimm,et al.  On a certain class of operator algebras , 1960 .

[30]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[31]  Dale Husemoller,et al.  Fibre Bundles (3rd ed.) , 1994 .

[32]  B. Blackadar,et al.  Shape theory for $C^*$-algebras. , 1985 .

[33]  G. Elliott Some Simple C*-Algebras Constructed As Crossed Products with Discrete Outer Automorphism Groups , 1980 .

[34]  N. Clarke A Finite But Not Stably Finite C ∗ -Algebra , 1986 .

[35]  Joachim Cuntz,et al.  Dimension functions on simpleC*-algebras , 1978 .

[36]  M. Rørdam Stability of $C^*$-algebras is not a stable property , 1997, Documenta Mathematica.

[37]  P. Cohn Simple rings without zero-divisors, and Lie division rings , 1959 .

[38]  J. Cuntz K-theory for certain C-algebras , 1981 .