On the Recursive Sequence xn+1=A+xnp/xn−1p
暂无分享,去创建一个
[1] G. Ladas,et al. On the recursive sequence _{+1}=\frac{}_{}+\frac{1}_{-2} , 1998 .
[2] Stevo Stevic,et al. On positive solutions of a (k+1)th order difference equation , 2006, Appl. Math. Lett..
[3] S. Stevo,et al. The recursive sequence xn+1 = g(xn, xn-1)/(A + xn) , 2002, Appl. Math. Lett..
[4] A. M. Ahmed,et al. On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .
[5] G. Ladas,et al. On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .
[6] Stevo Stević,et al. Asymptotic behavior of a sequence defined by iteration with applications , 2002 .
[7] Convergence to equilibria in discrete population models , 2005 .
[8] Lothar Berg,et al. Inclusion Theorems for Non-linear Difference Equations with Applications , 2004 .
[9] Sin-Ei Takahasi,et al. ON CONVERGENCE OF A RECURSIVE SEQUENCE $x_{n+1} = f(x_{n-1}, x_n)$ , 2006 .
[10] Kenneth S. Berenhaut,et al. The behaviour of the positive solutions of the difference equation , 2006 .
[11] Wan-Tong Li,et al. Permanence and global stability of positive solutions of a nonautonomous discrete ratio-dependent predator-prey model , 2005 .
[12] Stevo Stević. On the recursive sequence xn+1=-1/xn+A/xn-1 , 2001 .
[13] Stevo Stević,et al. On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .
[14] Wan-Tong Li,et al. On the recursive sequencexn+1=α-(xn/xn−1) , 2005 .
[15] Stevo Stevi´c,et al. ON THE RECURSIVE SEQUENCE $x_{n+1}=x_{n-1}/g(x_n)$ , 2002 .