Image Processing for Solar Cell Analysis, Diagnostics and Quality Assurance Inspection

Image capturing, processing, and analysis have numerous uses in solar cell research, device and process development and characterization, process control, and quality assurance and inspection. Solar cell image processing is expanding due to the increasing performance (resolution, sensitivity, spectral range) and low-cost of commercial CCD and infrared cameras. Methods and applications are discussed, with primary focus on monocrystalline and polycrystalline silicon solar cells using visible and infrared (thermography) wavelengths. The most prominent applications relate to mapping of minority carrier lifetime, shunts, and defects in solar cell wafers, in various stages of the manufacturing process. Other applications include measurements of surface texture and reflectivity, surface cleanliness, integrity of metallization lines, uniformity of coatings, and crystallographic texture and grain size. Image processing offers the capability to assess large-areas (> 100 cm2) with a non-contact, fast (~ 1 second), and modest cost. The challenge is to quantify and interpret the image data in order to better inform device design, process engineering, and quality control. Many promising solar cell technologies fail in the transition from laboratory to factory due to issues related to scale-up in area and manufacturing throughput. Image analysis provides an effective method to assess areal uniformity, device-to-device reproducibility, and defect densities. More integration of image analysis from research devices to field testing of modules will continue as the photovoltaics industry matures. DOI: 10.4018/978-1-4666-1996-8.ch014

[1]  Carosena Meola,et al.  Comparison between pulsed and modulated thermography in glass-epoxy laminates , 2002 .

[2]  Wilhelm Warta,et al.  Understanding junction breakdown in multicrystalline solar cells , 2011 .

[3]  Xavier Maldague,et al.  Thermographic inspection of cracked solar cells , 2002, SPIE Defense + Commercial Sensing.

[4]  Marta Rencz,et al.  Thermal mapping with liquid crystal method , 1996 .

[5]  Otwin Breitenstein,et al.  Unsteady-state lock-in thermography - Application to shunts in solar cells , 2007 .

[6]  Jingguang G. Chen,et al.  Contact wetting angle as a characterization technique for processing CdTe/CdS solar cells , 2007 .

[7]  D. Macdonald,et al.  Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence , 2008 .

[8]  J. Isenberg,et al.  Shunt-analysis of epitaxial silicon thin-film solar cells by lock-in thermography , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[9]  M. Schubert,et al.  Minority carrier lifetime of silicon solar cells from quasi-steady-state photoluminescence , 2011 .

[10]  O. Breitenstein,et al.  Lock-In IR-Thermography – A Novel Tool for Material and Device Characterization , 2001 .

[11]  Sohail Anwar,et al.  Project-based international collaboration in solar energy education: A case study from France , 2012 .

[12]  David Hinken,et al.  Recombination current and series resistance imaging of solar cells by combined luminescence and lock-in thermography , 2007 .

[13]  Takahide Sakagami,et al.  Applications of pulse heating thermography and lock-in thermography to quantitative nondestructive evaluations , 2002 .

[14]  Liu Yang,et al.  Solar cell crack inspection by image processing , 2004, Proceedings of 2004 International Conference on the Business of Electronic Product Reliability and Liability (IEEE Cat. No.04EX809).

[15]  B. Cardozo,et al.  Theory of electroluminescence intensity and insights into recombination in thin film solar cells , 2010 .

[16]  F. Luk,et al.  Measurement of surface roughness by a machine vision system , 1989 .

[17]  Renfu Lu,et al.  14 – Quality evaluation of Fruit by Hyperspectral Imaging , 2008 .

[18]  Nitin Kumar,et al.  Local Linear Regression on Hybrid Eigenfaces for Pose Invariant Face Recognition , 2012, Int. J. Comput. Vis. Image Process..

[19]  Fred A. Hamprecht,et al.  A three-dimensional measure of surface roughness based on mathematical morphology , 2006 .

[20]  B. Sopori,et al.  Rapid mapping of AR coating thickness on Si solar cells using GT-FabScan 6000 , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[21]  Dimitrios I. Fotiadis,et al.  Intravascular Imaging: Current Applications and Research Developments , 2011 .

[22]  Bill Schneider,et al.  Infrared lock-in techniques for solar cell inspection , 2011, Defense + Commercial Sensing.

[23]  I. Cernica,et al.  Optimization of front surface texturing processes for high-efficiency silicon solar cells , 2005 .

[24]  Shi Xiaojun,et al.  Evaluation of three-dimensional surface roughness parameters based on digital image processing , 2009 .

[25]  Thorsten Trupke,et al.  Advanced luminescence based effective series resistance imaging of silicon solar cells , 2008 .

[26]  S. Chandrasekaran,et al.  Effect of microfabrication processes on surface roughness parameters of silicon surfaces , 2004 .

[27]  Bijan Shirinzadeh,et al.  A vision-based approach for surface roughness assessment at micro and nano scales , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[28]  H. Hoppe,et al.  Luminescence imaging of polymer solar cells: Visualization of progressing degradation , 2011 .

[29]  B. Sopori,et al.  Process monitoring in solar cell manufacturing , 1999 .

[30]  Du-Ming Tsai,et al.  Surface roughness classification for castings , 1999, Pattern Recognit..

[31]  Wojtek J. Walecki,et al.  Integrated quantum efficiency, reflectance, topography and stress metrology for solar cell manufacturing , 2008, Optical Engineering + Applications.

[32]  V. Yakovlev,et al.  Fluorescent microscopy of wet-cleaned surfaces: imaging of water stains distribution , 2003 .

[33]  Chenggen Quan,et al.  Surface roughness measurement of semi-conductor wafers using a modified total integrated scattering model , 2002 .

[34]  M. Kittler,et al.  Photoluminescence study on defects in multicrystalline silicon , 2007 .

[35]  D.E. Sawyer,et al.  Laser scanning of solar cells for the display of cell operating characteristics and detection of cell defects , 1980, IEEE Transactions on Electron Devices.

[36]  Thorsten Trupke,et al.  Photoluminescence imaging speeds solar cell inspection , 2010 .

[37]  M. Schubert,et al.  Spatially resolved lifetime imaging of silicon wafers by measurement of infrared emission , 2003 .

[38]  K. S. Lee,et al.  Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells , 2005 .

[39]  Du-Ming Tsai,et al.  Anisotropic diffusion with generalized diffusion coefficient function for defect detection in low-contrast surface images , 2010, Pattern Recognit..

[40]  J. A. Kratochvil,et al.  Applications for infrared imaging equipment in photovoltaic cell, module, and system testing , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[41]  David Hinken,et al.  Determination of the effective diffusion length of silicon solar cells from photoluminescence , 2009 .

[42]  H. Sugimoto,et al.  Photoluminescence Imaging of Multicrystalline Si Wafers during HF Etching , 2007 .

[43]  Luminescence Shunt Imaging: Qualitative and Quantitative Shunt Images Using Photoluminescence Imaging , 2009 .

[44]  G. B. Lush,et al.  Machine vision for solar cell characterization , 2000, Electronic Imaging.

[45]  L. Stolt,et al.  Optoelectronic images of polycrystalline thin-film solar cells based on CuInSe2 and CuInGaSe2 obtained by laser scanning , 1999 .

[46]  Edward R. Dougherty,et al.  Morphological quantification of surface roughness , 2003 .

[47]  V. Yakovlev,et al.  Novel optical technique for microscopic imaging of water stains , 2005 .

[48]  D. F. Weirauch,et al.  An evaluation of the sessile drop technique for the study of (Hg, Cd)Te surfaces , 1993 .

[49]  Jong-Hann Jean,et al.  Application of an image processing software tool to crack inspection of crystalline silicon solar cells , 2011, 2011 International Conference on Machine Learning and Cybernetics.

[50]  S. Dutta,et al.  Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication , 2007 .

[51]  C. Lokhande,et al.  Contact angle measurements: an empirical diagnostic method for evaluation of thin film solar cell absorbers (CuInS2) , 2003 .

[52]  T. Fuyuki,et al.  Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence , 2005 .

[53]  E. Novak,et al.  Photovoltaic Cell Texture Quantitatively Relates to Efficiency , 2010 .

[54]  M. Morschbach,et al.  Visible Light Emission by a Reverse-Biased Integrated Silicon Diode , 2007, IEEE Transactions on Electron Devices.

[55]  Da-Wen Sun,et al.  3 – Object Measurement Methods , 2008 .

[56]  L. Dobrzański,et al.  Surface texturing of multicrystalline silicon solar cells , 2008 .

[57]  M. Forster,et al.  New Method for Grain Size Characterization of a Multi-Crystalline Silicon Ingot , 2009 .

[58]  A. Lorenz,et al.  Fast Photoluminescence Imaging of Silicon Wafers , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[59]  K. Jolic,et al.  Non-contact, optically based measurement of surface roughness of ceramics , 1994 .

[60]  Otwin Breitenstein,et al.  Evaluation of Local Electrical Parameters of Solar Cells by Dynamic (Lock-In) Thermography , 1997 .

[61]  Thorsten Trupke,et al.  Luminescence imaging for inline characterisation in silicon photovoltaics , 2011 .

[62]  Y. Uraoka,et al.  -"Luminoscopy"-Novel Tool for the Diagnosis of Crystalline Silicon solar cells and Modules Utilizing Electroluminescence , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[63]  E. S. Gadelmawla,et al.  A vision system for surface roughness characterization using the gray level co-occurrence matrix , 2004 .

[64]  H.C.S. Rughooputh,et al.  Neural network based automated texture classification system , 2000, Electronic Imaging.

[65]  K. Palanikumar,et al.  Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling , 2008 .

[66]  Qingli Li,et al.  Detection of physical defects in solar cells by hyperspectral imaging technology , 2010 .

[67]  Jason Smith,et al.  Intent-Oriented Design Pattern Formalization Using SPQR , 2007 .

[68]  Wilhelm Warta,et al.  Spatially resolved determination of dark saturation current and series resistance of silicon solar cells , 2010 .

[69]  Otwin Breitenstein,et al.  Quantitative evaluation of shunts in solar cells by lock‐in thermography , 2003 .

[70]  Enrique Alegre,et al.  Computer Vision and Classification Techniques on the Surface Finish Control in Machining Processes , 2008, ICIAR.

[71]  Otwin Breitenstein,et al.  Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells , 2009 .

[72]  Yu-Teng Liang,et al.  Micro crack detection of multi‐crystalline silicon solar wafer using machine vision techniques , 2011 .

[73]  J. Rand,et al.  Silicon-Film™ Solar Cells by a Flexible Manufacturing System , 2008 .

[74]  Toufik Taibi Design Pattern Formalization Techniques , 2007 .

[75]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[76]  Thomas Pernau,et al.  Lock-in Thermography : a universal tool for local analysis of solar cells , 2005 .

[77]  Higinio González-Jorge,et al.  In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope , 2010, Sensors.

[78]  M. Al‐Jassim,et al.  Imaging study of multi-crystalline silicon wafers throughout the manufacturing process , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[79]  Eicke R. Weber,et al.  Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production , 2010 .

[80]  Spatially resolved characterization of silicon as‐cut wafers with photoluminescence imaging , 2009 .

[81]  W. Metzger How lifetime fluctuations, grain-boundary recombination, and junctions affect lifetime measurements and their correlation to silicon solar cell performance , 2008 .

[82]  K. Araki,et al.  Photoluminescence analysis of intragrain defects in multicrystalline silicon wafers for solar cells , 2007 .

[83]  Ewan D. Dunlop,et al.  Radiometric Pulse and Thermal Imaging Methods for the Detection of Physical Defects in solar Cells and Si Wafers in a Production Environment. , 2004 .

[84]  Wilhelm Warta,et al.  PROGRESS WITH LUMINESCENCE IMAGING FOR THE CHARACTERISATION OF SILICON WAFERS AND SOLAR CELLS , 2007 .

[86]  V. Huynh,et al.  Statistical analysis of optical fourier transform patterns for surface texture assessment , 1992 .

[87]  J. W. Bishop Microplasma breakdown and hot-spots in silicon solar cells , 1989 .

[88]  T. Fuyuki,et al.  Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence , 2009 .

[89]  M. A. Younis On line surface roughness measurements using image processing towards an adaptive control , 1998 .

[90]  Wilhelm Warta,et al.  Comparison of luminescence imaging and illuminated lock-in thermography on silicon solar cells , 2006 .

[91]  S. Johnston,et al.  Applications of imaging techniques for solar cell characterization , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[92]  A. G. Chynoweth,et al.  Photon Emission from Avalanche Breakdown in Silicon , 1956 .

[93]  Xiaolin Hu,et al.  Thermoreflectance and multimode imaging for defect location in silicon solar cells , 2010, Optics + Photonics for Sustainable Energy.

[94]  Saif alZahir A Fast New Rotation Insensitive WP-Based Method for Image Indexing and Retrieval , 2014 .

[95]  W. Warta Defect and impurity diagnostics and process monitoring , 2002 .

[96]  O. Breitenstein,et al.  Quantitative analysis of the influence of shunts in solar cells by means of lock-in thermography , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[97]  R. Ahrenkiel,et al.  Evaluation of Four Imaging Techniques for the Electrical Characterization of Solar Cells , 2008 .

[98]  Otwin Breitenstein,et al.  Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells , 2004 .

[99]  Max Planck,et al.  Thermal Failure Analysis by IR Lock-in Thermography , 2011 .

[100]  Du-Ming Tsai,et al.  An improved anisotropic diffusion model for detail- and edge-preserving smoothing , 2010, Pattern Recognit. Lett..

[101]  P. Würfel,et al.  Absorptivity of silicon solar cells obtained from luminescence , 1998 .

[102]  Pavel Tománek,et al.  Detection and Localization of Defects in Monocrystalline Silicon Solar Cell , 2010 .

[103]  Jun Zhou,et al.  Computer Vision and Pattern Recognition in Environmental Informatics , 2015, CVPR 2015.

[104]  S. Riepe,et al.  Quality control using luminescence imaging in production of mcsilicon solar cells from umg feedstock , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[105]  M. Hilali,et al.  Fast in-line surface topography metrology enabling stress calculation for solar cell manufacturing for throughput in excess of 2000 wafers per hour , 2008 .

[106]  Michael A. Quintana,et al.  Exploring diagnostic capabilities for application to new photovoltaic technologies , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[107]  Detailed Characterization of AR Coatings on Si Solar Cells: A New Application of GT-FabScan 6000; Preprint , 2004 .

[108]  Jean M. Bennett,et al.  Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques. , 1992, Applied optics.

[109]  J. A. Tsanakas,et al.  Passive and Active Thermographic Assessment as a Tool for Condition-Based Performance Monitoring of Photovoltaic Modules , 2011 .

[110]  J. Méndez‐Ramos,et al.  Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO3 concentrations , 2009 .

[111]  Ship-Peng Lo,et al.  Rapid measurement of surface roughness for face-milling aluminum using laser scattering and the Taguchi method , 2005 .

[112]  A. Kaminski,et al.  Diffusion length determination in solar grade silicon by room temperature photoluminescence measurements , 2011 .

[114]  Carsten Schinke,et al.  Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers. , 2011, The Review of scientific instruments.

[115]  Te-Hsiu Sun,et al.  Electric contacts inspection using machine vision , 2010, Image Vis. Comput..

[116]  Nicolas P. Avdelidis,et al.  A thermographic survey for evaluating in situ the performance of photovoltaic panels , 2011, Defense + Commercial Sensing.

[117]  L. Karunamoorthy,et al.  Effect of lighting conditions in the study of surface roughness by machine vision - an experimental design approach , 2008 .

[118]  Quantitative carrier lifetime images optically measured on rough silicon wafers , 2007 .

[119]  Da-Wen Sun,et al.  2 – Image Segmentation Techniques , 2008 .

[120]  J. Sites,et al.  LBIC analysis of thin-film polycrystalline solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[121]  Du-Ming Tsai,et al.  Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion , 2010, Image Vis. Comput..

[122]  Frank Altmann,et al.  Lock-in thermal IR imaging using a solid immersion lens , 2006, Microelectron. Reliab..

[123]  Bryce S. Richards,et al.  Improvement in multi‐crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer , 2011 .

[124]  Rajneesh Kumar,et al.  Application of digital image magnification for surface roughness evaluation using machine vision , 2005 .

[125]  Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting , 2010 .

[126]  Lawrence L. Kazmerski,et al.  Photovoltaics characterization: A survey of diagnostic measurements , 1998 .

[127]  W. Warta,et al.  Imaging method for laterally resolved measurement of minority carrier densities and lifetimes: Measurement principle and first applications , 2003 .

[128]  Sergey N. Skovorod'ko,et al.  Small optical device for measurement of surface roughness , 2002, International Conference on Correlation Optics.