Adaptive variable structure control for chaos suppression of unified chaotic systems

This paper investigates the chaos suppression problem for a class of unified chaotic systems subject to uncertainties and control input with dead-zone nonlinearity. Using the variable structure control technique, a robust adaptive control law is established to suppress chaos in a class of unified chaotic systems even with unknown uncertainties and dead-zone nonlinearity in input. In particular, a switching surface is newly proposed to simplify the task of ensuring the stability of the closed-loop system in the sliding mode. Numerical results validate the effectiveness of the proposed adaptive control scheme.

[1]  Wang Jiang,et al.  H∞ Variable universe adaptive fuzzy control for chaotic system , 2005 .

[2]  Shih-Yu Li,et al.  Pragmatical adaptive chaos control from a new double van der Pol system to a new double Duffing system , 2008, Appl. Math. Comput..

[3]  Ju H. Park,et al.  Hinfinity synchronization of time-delayed chaotic systems , 2008, Appl. Math. Comput..

[4]  Chi-Chuan Hwang,et al.  Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach. , 2006, Chaos.

[5]  Guanrong Chen,et al.  ON FEEDBACK CONTROL OF CHAOTIC NONLINEAR DYNAMIC SYSTEMS , 1992 .

[6]  Huijun Guo,et al.  A radial basis function sliding mode controller for chaotic Lorenz system , 2006 .

[7]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[8]  Nonlinear H 1 synchronization of Lur ' e systems : dynamic output feedback caseJohan , 2007 .

[9]  Jun-Juh Yan,et al.  Sliding mode control for uncertain unified chaotic systems with input nonlinearity , 2007 .

[10]  Ruihong Li,et al.  Chaos controlling of extended nonlinear Liénard system based on the Melnikov theory , 2006, Appl. Math. Comput..

[11]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[12]  J. Suykens,et al.  Nonlinear H/sub /spl infin// synchronization of Lur'e systems: dynamic output feedback case , 1997 .

[13]  Chun-Mei Yang,et al.  Impulsive control of Lorenz system , 1997 .

[14]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[15]  S. Mascolo,et al.  CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA'S CIRCUIT , 1999 .

[16]  Guanrong Chen,et al.  A switching scheme for synthesizing attractors of dissipative chaotic systems , 2008, Appl. Math. Comput..

[17]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[18]  Her-Terng Yau,et al.  Chaos synchronization of different chaotic systems subjected to input nonlinearity , 2008, Appl. Math. Comput..

[19]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[20]  Her-Terng Yau,et al.  Control of chaos in Lorenz system , 2002 .

[21]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[22]  Keiji Konishi,et al.  Sliding mode control for a class of chaotic systems , 1998 .

[23]  Ju H. Park,et al.  LMI optimization approach to stabilization of Genesio-Tesi chaotic system via dynamic controller , 2008, Appl. Math. Comput..

[24]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[25]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[26]  Lin Chen,et al.  Stabilization of parameters perturbation chaotic system via adaptive backstepping technique , 2008, Appl. Math. Comput..

[27]  M. T. Yassen,et al.  The optimal control of Chen chaotic dynamical system , 2002, Appl. Math. Comput..