Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton

In order to minimize steady-state error with respect to uncertainties in robot control, proportional-integral-derivative (PID) control needs a big integral gain, or a neural compensator is added to the classical proportional-derivative (PD) control with a large derivative gain. Both of them deteriorate transient performances of the robot control. In this paper, we extend the popular neural PD control into neural PID control. This novel control is a natural combination of industrial linear PID control and neural compensation. The main contributions of this paper are semiglobal asymptotic stability of the neural PID control and local asymptotic stability of the neural PID control with a velocity observer which are proved with standard weight training algorithms. These conditions give explicit selection methods for the gains of the linear PID control. An experimental study on an upper limb exoskeleton with this neural PID control is addressed.

[1]  A. Visioli Modified anti-windup scheme for PID controllers , 2003 .

[2]  Jon Rigelsford,et al.  Robot Manipulator Control: Theory and Practice 2/e , 2004 .

[3]  Jude W. Shavlik,et al.  Refining PID Controllers Using Neural Networks , 1991, Neural Computation.

[4]  Paolo Rocco,et al.  Stability of PID control for industrial robot arms , 1996, IEEE Trans. Robotics Autom..

[5]  Rafael Kelly,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[6]  Emanuela Natale,et al.  Use of neural networks for quick and accurate auto-tuning of PID controller , 2007 .

[7]  Frank L. Lewis,et al.  Implementation of a neural network tracking controller for a single flexible link: comparison with PD and PID controllers , 1998, IEEE Trans. Ind. Electron..

[8]  Frank L. Lewis,et al.  Robot Manipulator Control: Theory and Practice , 2003 .

[9]  Jasmina Arifovica Using genetic algorithms to select architecture of a feedforward arti cial neural network , 2000 .

[10]  Rafael Kelly,et al.  Semiglobal stability of saturated linear PID control for robot manipulators , 2003, Autom..

[11]  F. Greg Shinskey Process-control systems: Application, design, adjustment , 1979 .

[12]  Weiping Li,et al.  Adaptive manipulator control a case study , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[13]  Brad Paden,et al.  Globally asymptotically stable ‘PD+’ controller for robot manipulators , 1988 .

[14]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[15]  Meng Joo Er,et al.  Robust adaptive control of robot manipulators using generalized fuzzy neural networks , 2003, IEEE Trans. Ind. Electron..

[16]  Shinn-Ying Ho,et al.  Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA , 2006, IEEE Transactions on Fuzzy Systems.

[17]  Shuang Cong,et al.  PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems , 2009, IEEE Transactions on Industrial Electronics.

[18]  Dingli Yu,et al.  Fault tolerant control of multivariable processes using auto-tuning PID controller , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  F.L. Lewis,et al.  Implementation of a neural net tracking controller for a single flexible link: comparison with PD and PID controllers , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[20]  F. L. Lewis NONLINEAR NETWORK STRUCTURES FOR FEEDBACK CONTROL , 1999 .

[21]  Jasmina Arifovic,et al.  Using genetic algorithms to select architecture of a feedforward artificial neural network , 2001 .

[22]  Yaochu Jin,et al.  Decentralized adaptive fuzzy control of robot manipulators , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Guanrong Chen,et al.  An improved robust fuzzy-PID controller with optimal fuzzy reasoning , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[25]  Yunhui Liu,et al.  Dynamic sliding PID control for tracking of robot manipulators: theory and experiments , 2003, IEEE Trans. Robotics Autom..

[26]  G. R. Duan Parametric eigenstructure assignment via output feedback based on singular value decompositions , 2003 .

[27]  Wail Gueaieb,et al.  The hierarchical expert tuning of PID controllers using tools of soft computing , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[28]  George K. I. Mann,et al.  Two-level tuning of fuzzy PID controllers , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[29]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[30]  Suguru Arimoto,et al.  Fundamental problems of robot control: Part I, Innovations in the realm of robot servo-loops , 1995, Robotica.

[31]  Kenji Suzuki,et al.  A Simple Neural Network Pruning Algorithm with Application to Filter Synthesis , 2001, Neural Processing Letters.

[32]  Patrizio Tomei,et al.  Adaptive PD controller for robot manipulators , 1991, IEEE Trans. Robotics Autom..

[33]  R. Ortega,et al.  A semiglobally stable output feedback PI2D regulator for robot manipulators , 1995, IEEE Trans. Autom. Control..

[34]  Frank L. Lewis,et al.  Neural net robot controller with guaranteed tracking performance , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[35]  Chaio-Shiung Chen Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators , 2008, IEEE Transactions on Industrial Electronics.

[36]  Liu Hsu,et al.  Arbitrarily small damping allows global output feedback tracking of a class of Euler-Lagrange systems , 2008, 2008 American Control Conference.

[37]  H.-J. Uang,et al.  Mixed H2/H∞ PID tracking control design for uncertain spacecraft systems using a cerebellar model articulation controller , 2006 .

[38]  Ser Yong Lim,et al.  A New Class of Robust Control Laws for Tracking of Robots , 1994, Int. J. Robotics Res..

[39]  Sarangapani Jagannathan,et al.  Neural Network Output Feedback Control of Robot Formations , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  George K. I. Mann,et al.  Design and Tuning of Standard Additive Model Based Fuzzy PID Controllers for Multivariable Process Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).