Développement de circuits logiques programmables résistants aux aléas logiques en technologie CMOS submicrométrique
暂无分享,去创建一个
[1] John F. Meyer,et al. Fault Tolerant Sequential Machines , 1971, IEEE Transactions on Computers.
[2] J. von Neumann,et al. Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .
[3] C. Carmichael,et al. SEU mitigation testing of Xilinx Virtex II FPGAs , 2003, 2003 IEEE Radiation Effects Data Workshop.
[4] G. M. Swift,et al. An experimental survey of heavy ion induced dielectric rupture in Actel field programmable gate arrays (FPGAs) , 1995 .
[5] Albert L. Hopkins. A Fault-Tolerant Information Processing Concept for Space Vehicles , 1971, IEEE Transactions on Computers.
[6] A. Marchioro,et al. Development of a Radiation Tolerant 2 . 0 V standard cell library using a commercial deep submicron CMOS technology for the LHC experiments , 2002 .
[7] S. Bonacini,et al. Characterization and production testing of a quad 12 bit 40 Ms/sec A/D converter with automatic digital range selection for calorimetry , 2005 .
[8] Thomas E. Fuja,et al. Linear Sum Codes for Random Access Memories , 1988, IEEE Trans. Computers.
[9] K. Joseph Hass,et al. An Ultra-Low Power , Radiation Tolerant , High Speed Correlator , 2003 .
[10] S. Whitaker,et al. Low power SEU immune CMOS memory circuits , 1992 .
[11] F. Faccio,et al. Computational method to estimate Single Event Upset rates in an accelerator environment , 2000 .
[12] Irving S. Reed,et al. Redundancy by Coding Versus Redundancy by Replication for Failure-Tolerant Sequential Circuits , 1972, IEEE Transactions on Computers.
[13] P. Murray,et al. SEE and TID test results of 1 Gb flash memories , 2004, 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No.04TH8774).
[14] R.E. Stricker,et al. C2L: A new high speed, high density bulk CMOS technology , 1976, 1976 International Electron Devices Meeting.
[15] A. Marchioro. Deep submicron technologies for HEP , 1998 .
[16] M. Baze,et al. Comparison of error rates in combinational and sequential logic , 1997 .
[17] F. Faccio,et al. RADIATION ISSUES IN THE NEW GENERATION OF HIGH ENERGY PHYSICS EXPERIMENTS , 2004 .
[18] James B. Kuo,et al. Low-voltage CMOS VLSI circuits , 1999 .
[19] G. Cervelli,et al. Radiation-induced edge effects in deep submicron CMOS transistors , 2005, IEEE Transactions on Nuclear Science.
[20] T. Calin,et al. Upset hardened memory design for submicron CMOS technology , 1996 .
[21] Allan H. Johnston,et al. Radiation effects on advanced flash memories , 1999 .
[22] A. B. Campbell,et al. Single-Event Phenomena in , 1996 .
[23] M. Y. Hsiao,et al. A class of optimal minimum odd-weight-column SEC-DED codes , 1970 .
[24] T. Calin,et al. SEU-hardened storage cell validation using a pulsed laser , 1996 .
[25] S. Bonacini,et al. An SEU-Robust Configurable Logic Block for the Implementation of a Radiation-Tolerant FPGA , 2006, IEEE Transactions on Nuclear Science.
[26] José G. Delgado-Frias,et al. Enhanced Fault-Tolerant Data Latches for Deep Submicron CMOS , 2005, CDES.
[27] Federico Faccio,et al. Deep submicron CMOS technologies for the LHC experiments , 1999 .
[28] P. W. Marshall,et al. Single Event Upset cross sections at various data rates , 1996 .
[29] R.L. Shuler,et al. SEU performance of TAG based flip-flops , 2005, IEEE Transactions on Nuclear Science.
[30] Weizhong Wang,et al. Edge triggered pulse latch design with delayed latching edge for radiation hardened application , 2004, IEEE Transactions on Nuclear Science.
[31] Nand Kumar,et al. Automated FSM Error Correction for Single Event Upsets , 2004 .
[32] Jr. Leonard R. Rockett. An SEU-hardened CMOS data latch design , 1988 .
[33] A. Marchioro,et al. Development of SEU-robust, radiation-tolerant and industry-compatible programmable logic components , 2007 .
[34] J. Benedetto,et al. Saturation of Threshold Voltage Shift in MOSFET's at High Total Dose , 1986, IEEE Transactions on Nuclear Science.
[35] Paul J. McWhorter,et al. Modeling the anneal of radiation-induced trapped holes in a varying thermal environment , 1990 .
[36] A. Paccagnella,et al. A review of ionizing radiation effects in floating gate memories , 2004, IEEE Transactions on Device and Materials Reliability.
[37] M. Baze,et al. Attenuation of single event induced pulses in CMOS combinational logic , 1997 .
[38] Richard W. Hamming,et al. Error detecting and error correcting codes , 1950 .
[39] P. Jarron,et al. Integrated circuits for particle physics experiments , 2000, IEEE Journal of Solid-State Circuits.
[40] J. Canaris,et al. SEU hardened memory cells for a CCSDS Reed-Solomon encoder , 1991 .
[41] H. E. Boesch,et al. Hole Transport and Trapping in Field Oxides , 1985, IEEE Transactions on Nuclear Science.
[42] Jörg Maier,et al. APPLICATION NOTE , 1997 .
[43] Sterling R. Whitaker,et al. An ultra-low-power, radiation-tolerant Reed Solomon encoder for space applications , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..
[44] S. Bonacini,et al. Kchip : A Radiation Tolerant Digital Data Concentrator chip for the CMS Preshower Detector , 2003 .
[45] P. H. Eaton,et al. SEU and SET Mitigation Techniques for FPGA Circuit and Configuration Bit Storage Design , 2005 .
[46] Federico Faccio,et al. Total dose and Single Event Effects (SEE) in a 0.25 µm CMOS technology , 1998 .
[47] A. El Gamal,et al. Architecture of field-programmable gate arrays , 1993, Proc. IEEE.
[48] R. C. Baumann,et al. Soft errors in commercial integrated circuits , 2004 .
[49] S. Niranjan,et al. A comparison of fault-tolerant state machine architectures for space-borne electronics , 1996, IEEE Trans. Reliab..