Développement de circuits logiques programmables résistants aux aléas logiques en technologie CMOS submicrométrique

L'electronique associee aux detecteurs de particules du grand collisionneur d'hadrons (LHC), en construction au CERN, fonctionnera dans un environnement tres radioactif. La plupart des composants microelectroniques developpes pour la premiere generation des experiences du LHC ont ete concues avec des buts specifiques et tres precis, non adaptables pour d'autres applications. Les composants commerciaux ne peuvent pas etre employes en proximite du point de collision des particules, car ils ne sont pas tolerants aux radiations. Cette these contribue a couvrir le besoin en composants programmables resistants aux rayonnements et aux alea logiques pour les experiences de physique des hautes energies. Dans ce sens, deux composants sont en cours de developpement : un dispositif logique programmable (PLD) et un reseau de portes programmables in-situ (FPGA). Ce travail s'est concentre egalement sur la recherche d'un registre resistant aux alea logiques dans les deux technologies mentionnees. Le registre est utilise comme bascule pour les donnees d'utilisateur dans le FPGA et le PLD, mais aussi comme cellule de configuration dans le FPGA.

[1]  John F. Meyer,et al.  Fault Tolerant Sequential Machines , 1971, IEEE Transactions on Computers.

[2]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[3]  C. Carmichael,et al.  SEU mitigation testing of Xilinx Virtex II FPGAs , 2003, 2003 IEEE Radiation Effects Data Workshop.

[4]  G. M. Swift,et al.  An experimental survey of heavy ion induced dielectric rupture in Actel field programmable gate arrays (FPGAs) , 1995 .

[5]  Albert L. Hopkins A Fault-Tolerant Information Processing Concept for Space Vehicles , 1971, IEEE Transactions on Computers.

[6]  A. Marchioro,et al.  Development of a Radiation Tolerant 2 . 0 V standard cell library using a commercial deep submicron CMOS technology for the LHC experiments , 2002 .

[7]  S. Bonacini,et al.  Characterization and production testing of a quad 12 bit 40 Ms/sec A/D converter with automatic digital range selection for calorimetry , 2005 .

[8]  Thomas E. Fuja,et al.  Linear Sum Codes for Random Access Memories , 1988, IEEE Trans. Computers.

[9]  K. Joseph Hass,et al.  An Ultra-Low Power , Radiation Tolerant , High Speed Correlator , 2003 .

[10]  S. Whitaker,et al.  Low power SEU immune CMOS memory circuits , 1992 .

[11]  F. Faccio,et al.  Computational method to estimate Single Event Upset rates in an accelerator environment , 2000 .

[12]  Irving S. Reed,et al.  Redundancy by Coding Versus Redundancy by Replication for Failure-Tolerant Sequential Circuits , 1972, IEEE Transactions on Computers.

[13]  P. Murray,et al.  SEE and TID test results of 1 Gb flash memories , 2004, 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No.04TH8774).

[14]  R.E. Stricker,et al.  C2L: A new high speed, high density bulk CMOS technology , 1976, 1976 International Electron Devices Meeting.

[15]  A. Marchioro Deep submicron technologies for HEP , 1998 .

[16]  M. Baze,et al.  Comparison of error rates in combinational and sequential logic , 1997 .

[17]  F. Faccio,et al.  RADIATION ISSUES IN THE NEW GENERATION OF HIGH ENERGY PHYSICS EXPERIMENTS , 2004 .

[18]  James B. Kuo,et al.  Low-voltage CMOS VLSI circuits , 1999 .

[19]  G. Cervelli,et al.  Radiation-induced edge effects in deep submicron CMOS transistors , 2005, IEEE Transactions on Nuclear Science.

[20]  T. Calin,et al.  Upset hardened memory design for submicron CMOS technology , 1996 .

[21]  Allan H. Johnston,et al.  Radiation effects on advanced flash memories , 1999 .

[22]  A. B. Campbell,et al.  Single-Event Phenomena in , 1996 .

[23]  M. Y. Hsiao,et al.  A class of optimal minimum odd-weight-column SEC-DED codes , 1970 .

[24]  T. Calin,et al.  SEU-hardened storage cell validation using a pulsed laser , 1996 .

[25]  S. Bonacini,et al.  An SEU-Robust Configurable Logic Block for the Implementation of a Radiation-Tolerant FPGA , 2006, IEEE Transactions on Nuclear Science.

[26]  José G. Delgado-Frias,et al.  Enhanced Fault-Tolerant Data Latches for Deep Submicron CMOS , 2005, CDES.

[27]  Federico Faccio,et al.  Deep submicron CMOS technologies for the LHC experiments , 1999 .

[28]  P. W. Marshall,et al.  Single Event Upset cross sections at various data rates , 1996 .

[29]  R.L. Shuler,et al.  SEU performance of TAG based flip-flops , 2005, IEEE Transactions on Nuclear Science.

[30]  Weizhong Wang,et al.  Edge triggered pulse latch design with delayed latching edge for radiation hardened application , 2004, IEEE Transactions on Nuclear Science.

[31]  Nand Kumar,et al.  Automated FSM Error Correction for Single Event Upsets , 2004 .

[32]  Jr. Leonard R. Rockett An SEU-hardened CMOS data latch design , 1988 .

[33]  A. Marchioro,et al.  Development of SEU-robust, radiation-tolerant and industry-compatible programmable logic components , 2007 .

[34]  J. Benedetto,et al.  Saturation of Threshold Voltage Shift in MOSFET's at High Total Dose , 1986, IEEE Transactions on Nuclear Science.

[35]  Paul J. McWhorter,et al.  Modeling the anneal of radiation-induced trapped holes in a varying thermal environment , 1990 .

[36]  A. Paccagnella,et al.  A review of ionizing radiation effects in floating gate memories , 2004, IEEE Transactions on Device and Materials Reliability.

[37]  M. Baze,et al.  Attenuation of single event induced pulses in CMOS combinational logic , 1997 .

[38]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[39]  P. Jarron,et al.  Integrated circuits for particle physics experiments , 2000, IEEE Journal of Solid-State Circuits.

[40]  J. Canaris,et al.  SEU hardened memory cells for a CCSDS Reed-Solomon encoder , 1991 .

[41]  H. E. Boesch,et al.  Hole Transport and Trapping in Field Oxides , 1985, IEEE Transactions on Nuclear Science.

[42]  Jörg Maier,et al.  APPLICATION NOTE , 1997 .

[43]  Sterling R. Whitaker,et al.  An ultra-low-power, radiation-tolerant Reed Solomon encoder for space applications , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[44]  S. Bonacini,et al.  Kchip : A Radiation Tolerant Digital Data Concentrator chip for the CMS Preshower Detector , 2003 .

[45]  P. H. Eaton,et al.  SEU and SET Mitigation Techniques for FPGA Circuit and Configuration Bit Storage Design , 2005 .

[46]  Federico Faccio,et al.  Total dose and Single Event Effects (SEE) in a 0.25 µm CMOS technology , 1998 .

[47]  A. El Gamal,et al.  Architecture of field-programmable gate arrays , 1993, Proc. IEEE.

[48]  R. C. Baumann,et al.  Soft errors in commercial integrated circuits , 2004 .

[49]  S. Niranjan,et al.  A comparison of fault-tolerant state machine architectures for space-borne electronics , 1996, IEEE Trans. Reliab..