Fault detection in a network of similar machines using clustering approach

Fault detection, which involves the estimation of the condition, health or degradation of an equipment or a process and a decision logic to determine whether an event that can be considered as a fault has occurred, is an integral component in prognostics and health management because it is an essential indicator when to perform fault diagnosis and isolation, and it also precedes any performance prediction methodology. The implementation of data-driven fault detection has generally been reliant on unit-specific models which can be less effective with insufficient training data or when used in applications with non-stationary working conditions. The aforementioned scenarios can be alleviated by leveraging on data from similar units experiencing comparable operating regimes. This dissertation investigates the formulation, development and implementation of a cluster-based fault detection to a fleet of similar machines. A two-step approach is introduced: fleet clustering and local cluster fault detection. Fleet clustering verifies, discovers and identifies the group structure of the network of machines. Afterwhich, the health of each unit in the cluster is assessed using peer-to-peer comparison. The approach developed in this dissertation is validated with two case studies: a fleet of industrial welding robots from an automotive manufacturing facility and a group of wind turbines from several wind farms.

[1]  Rolf Isermann,et al.  Fault diagnosis of machines via parameter estimation and knowledge processing - Tutorial paper , 1991, Autom..

[2]  Faisal Khan,et al.  Real-time fault diagnosis using knowledge-based expert system , 2008 .

[3]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[4]  D. Brillinger,et al.  Handbook of methods of applied statistics , 1967 .

[5]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[6]  Bo-Suk Yang,et al.  Application of relevance vector machine and logistic regression for machine degradation assessment , 2010 .

[7]  Gerard Ledwich,et al.  A novel fuzzy logic approach to transformer fault diagnosis , 2000 .

[8]  Ji Yan-chao APPLICATION OF FUZZY PETRI NETS KNOWLEDGE REPRESENTATION IN ELECTRIC POWER TRANSFORMER FAULT DIAGNOSIS , 2003 .

[9]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[10]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[11]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[12]  Philippe Weber,et al.  Reliability modelling with dynamic bayesian networks , 2003 .

[13]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[14]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[15]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[16]  Janet L. Kolodner,et al.  An introduction to case-based reasoning , 1992, Artificial Intelligence Review.

[17]  Gautam Biswas,et al.  Bayesian Fault Detection and Diagnosis in Dynamic Systems , 2000, AAAI/IAAI.

[18]  Marios M. Polycarpou,et al.  Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[19]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[20]  Asoke K. Nandi,et al.  Support vector machines for detection and characterization of rolling element bearing faults , 2001 .

[21]  R. K. Mehra,et al.  Correspondence item: An innovations approach to fault detection and diagnosis in dynamic systems , 1971 .

[22]  Jong-Duk Son,et al.  Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine , 2009, Expert Syst. Appl..

[23]  Jay Lee,et al.  Wind turbine performance assessment using multi-regime modeling approach , 2012 .

[24]  Janos Gertler,et al.  A new structural framework for parity equation-based failure detection and isolation , 1990, Autom..

[25]  Jose Mathew,et al.  Bearing Signature Analysis as a Medium for Fault Detection: A Review , 2008 .

[26]  Chin E. Lin,et al.  An expert system for transformer fault diagnosis using dissolved gas analysis , 1993 .

[27]  David Siegel Evaluation of health assessment techniques for rotating machinery , 2009 .

[28]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[29]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[30]  S.J. Qin,et al.  Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis , 2006, IEEE Transactions on Semiconductor Manufacturing.

[31]  C. S. Chen,et al.  A Rule-Based Expert System with Colored Petri Net Models for Distribution System Service Restoration , 2002, IEEE Power Engineering Review.

[32]  Liuqing Peng,et al.  CVAP: Validation for Cluster Analyses , 2009, Data Sci. J..

[33]  Jin Wang,et al.  Control and Monitoring of Semiconductor Manufacturing Processes: Challenges and Opportunities , 2004 .

[34]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[35]  Kenneth A. Loparo,et al.  A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[36]  Yongguo Mei,et al.  Information bounds and quickest change detection in decentralized decision systems , 2005, IEEE Transactions on Information Theory.

[37]  J. Gertler Fault detection and isolation using parity relations , 1997 .

[38]  Hassan Hammouri,et al.  Observer-based approach to fault detection and isolation for nonlinear systems , 1999, IEEE Trans. Autom. Control..

[39]  Sebastian Thrun,et al.  Real-time fault diagnosis [robot fault diagnosis] , 2004, IEEE Robotics & Automation Magazine.

[40]  K. F. Martin,et al.  A review by discussion of condition monitoring and fault diagnosis in machine tools , 1994 .

[41]  Richard C. Dubes,et al.  A test for spatial homogeneity in cluster analysis , 1987 .

[42]  Michèle Basseville,et al.  Detecting changes in signals and systems - A survey , 1988, Autom..

[43]  Krishna R. Pattipati,et al.  Rollout strategies for sequential fault diagnosis , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[44]  Efraim Turban,et al.  Decision support systems and intelligent systems , 1997 .

[45]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[46]  Zi Huang,et al.  Distribution-based similarity measures for multi-dimensional point set retrieval applications , 2008, ACM Multimedia.

[47]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[48]  Shu-Hsien Liao,et al.  Expert system methodologies and applications - a decade review from 1995 to 2004 , 2005, Expert Syst. Appl..

[49]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[50]  Zhiqiang Ge,et al.  Semiconductor Manufacturing Process Monitoring Based on Adaptive Substatistical PCA , 2010, IEEE Transactions on Semiconductor Manufacturing.

[51]  Yaoyu Li,et al.  A review of recent advances in wind turbine condition monitoring and fault diagnosis , 2009, 2009 IEEE Power Electronics and Machines in Wind Applications.

[52]  Heidar A. Malki,et al.  Control Systems Technology , 2001 .

[53]  V. Purushotham,et al.  Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition , 2005 .

[54]  Allan J. Volponi,et al.  The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study , 2000 .

[55]  H.A. Toliyat,et al.  Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review , 2005, IEEE Transactions on Energy Conversion.

[56]  G Rizzoni,et al.  Nonlinear parity equation based residual generation for diagnosis of automotive engine faults , 1995 .

[57]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[58]  Farhi Marir,et al.  Case-based reasoning: A review , 1994, The Knowledge Engineering Review.

[59]  Stephen I. Gallant,et al.  Connectionist expert systems , 1988, CACM.

[60]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[61]  Ruxu Du,et al.  Fault diagnosis using support vector machine with an application in sheet metal stamping operations , 2004 .

[62]  Jie Chen,et al.  Observer-based fault detection and isolation: robustness and applications , 1997 .

[63]  Yaguo Lei,et al.  A new approach to intelligent fault diagnosis of rotating machinery , 2008, Expert Syst. Appl..

[64]  S. Dudoit,et al.  A prediction-based resampling method for estimating the number of clusters in a dataset , 2002, Genome Biology.

[65]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[66]  Spilios D Fassois,et al.  Time-series methods for fault detection and identification in vibrating structures , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[68]  N. Tudoroiu,et al.  Fault Detection and Diagnosis of Valve Actuators in Discharge Air Temperature (DAT) Systems, using Interactive Unscented Kalman Filter Estimation , 2006, 2006 IEEE International Symposium on Industrial Electronics.

[69]  Ali Mohammad Ranjbar,et al.  Fuzzy rule-based expert system for power system fault diagnosis , 1997 .

[70]  Chrissanthi Angeli,et al.  On-Line Fault Detection Techniques for Technical Systems: A Survey , 2004, Int. J. Comput. Sci. Appl..

[71]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[72]  Srinivas Katipamula,et al.  Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I , 2005 .

[73]  Vasiliy V. Krivtsov,et al.  Regression approach to tire reliability analysis , 2002, Reliab. Eng. Syst. Saf..

[74]  Huairui Guo,et al.  Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model , 2006, RAMS '06. Annual Reliability and Maintainability Symposium, 2006..

[75]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[76]  Ian D. Walker,et al.  Observer-based fault detection for robot manipulators , 1997, Proceedings of International Conference on Robotics and Automation.

[77]  A. B. Rad,et al.  Intelligent system for process supervision and fault diagnosis in dynamic physical systems , 2006, IEEE Transactions on Industrial Electronics.

[78]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[79]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Multi-Objective Clustering Ensemble , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[80]  George Karypis,et al.  Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.

[81]  Raghunathan Rengaswamy,et al.  Fault Diagnosis by Qualitative Trend Analysis of the Principal Components , 2005 .

[82]  Zhiming Zhang,et al.  Similarity Measures for Retrieval in Case-Based Reasoning Systems , 1998, Appl. Artif. Intell..

[83]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[84]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[85]  H. Akaike A new look at the statistical model identification , 1974 .

[86]  Venkat Venkatasubramanian,et al.  Challenges in the industrial applications of fault diagnostic systems , 2000 .

[87]  Tatsuro Muro,et al.  ESTIMATION FOR WEAR LIFE OF HEAVY DUMP TRUCK TIRE , 1984 .

[88]  Thomas G. Habetler,et al.  A survey of condition monitoring and protection methods for medium voltage induction motors , 2009, 2009 IEEE Energy Conversion Congress and Exposition.

[89]  C. Park,et al.  Fault detection in an air-handling unit using residual and recursive parameter identification methods , 1996 .

[90]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[91]  Chaochang Chiu,et al.  Intelligent aircraft maintenance support system using genetic algorithms and case-based reasoning , 2004 .

[92]  Mikhail Belkin,et al.  Data spectroscopy: learning mixture models using eigenspaces of convolution operators , 2008, ICML '08.

[93]  Robert X. Gao,et al.  Mechanical Systems and Signal Processing Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring , 2006 .

[94]  H. Bozdogan,et al.  Multi-sample cluster analysis using Akaike's Information Criterion , 1984 .

[95]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[96]  Andrew Kusiak,et al.  Models for monitoring wind farm power , 2009 .

[97]  T. Cox,et al.  A conditioned distance ratio method for analyzing spatial patterns , 1976 .

[98]  Rolf Isermann,et al.  Model based fault detection of vehicle suspension and hydraulic brake systems , 2002 .

[99]  Alina Beygelzimer,et al.  Efficient Test Selection in Active Diagnosis via Entropy Approximation , 2005, UAI.

[100]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[101]  Frank L. Lewis,et al.  Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .

[102]  Chan-Yun Yang,et al.  Prediction of tool breakage in face milling using support vector machine , 2008 .

[103]  Yu Yang,et al.  A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM , 2007 .

[104]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[105]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[106]  Jong-Keun Park,et al.  An expert system for fault section diagnosis of power systems using fuzzy relations , 1997 .

[107]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[108]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[109]  Bo-Suk Yang,et al.  Support vector machine in machine condition monitoring and fault diagnosis , 2007 .

[110]  Junyan Yang,et al.  Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension , 2007 .

[111]  Wang Wen-yuan Clustering Ensemble Approaches: An Overview , 2005 .

[112]  Mattias Nyberg,et al.  Model-based diagnosis of an automotive engine using several types of fault models , 2002, IEEE Trans. Control. Syst. Technol..

[113]  Antonio J. Marques Cardoso,et al.  Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park's Vector approach , 1997 .

[114]  J.-S. Jiang,et al.  The dynamic behaviour and crack detection of a beam with a crack , 1990 .

[115]  N. Viswanadham,et al.  Fault detection and diagnosis of automated manufacturing systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[116]  Erdal Panayirci,et al.  A test for multidimensional clustering tendency , 1983, Pattern Recognit..

[117]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[118]  Piero P. Bonissone,et al.  An Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines , 2008 .

[119]  Sohyung Cho,et al.  Tool breakage detection using support vector machine learning in a milling process , 2005 .

[120]  Mikhail Belkin,et al.  DATA SPECTROSCOPY: EIGENSPACES OF CONVOLUTION OPERATORS AND CLUSTERING , 2008, 0807.3719.

[121]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[122]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[123]  Irene Yu-Hua Gu,et al.  Voltage dip detection and power system transients , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[124]  Zhu Yongli,et al.  Bayesian networks-based approach for power systems fault diagnosis , 2006, IEEE Transactions on Power Delivery.

[125]  Benjamin R. Epstein,et al.  Fault detection and classification in linear integrated circuits: an application of discrimination analysis and hypothesis testing , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[126]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[127]  Chen Guojin ICA AND ITS APPLICATION TO CHEMICAL PROCESS MONITORING AND FAULT DIAGNOSIS , 2003 .

[128]  Xu Yong,et al.  A Novel Model of one-class Bearing Fault Detection using SVDD and Genetic Algorithm , 2007, 2007 2nd IEEE Conference on Industrial Electronics and Applications.

[129]  Janos J. Gertler,et al.  Analytical Redundancy Methods in Fault Detection and Isolation , 1991 .

[130]  Yang Yu,et al.  A roller bearing fault diagnosis method based on EMD energy entropy and ANN , 2006 .

[131]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[132]  C. Fukui,et al.  An Expert System for Fault Section Estimation Using Information from Protective Relays and Circuit Breakers , 1986, IEEE Transactions on Power Delivery.

[133]  K. Mathioudakis,et al.  Bayesian Network Approach for Gas Path Fault Diagnosis , 2004 .

[134]  Kil To Chong,et al.  Induction Machine Condition Monitoring Using Neural Network Modeling , 2007, IEEE Transactions on Industrial Electronics.

[135]  Peter Funk,et al.  Fault Diagnosis of Industrial Robots Using Acoustic Signals and Case-Based Reasoning , 2004, ECCBR.

[136]  Herbert Schulz,et al.  Balancing requirements for fast rotating tools and spindle systems , 1998 .

[137]  Rolf Isermann,et al.  Fault detection for modern Diesel engines using signal- and process model-based methods , 2005 .

[138]  J. Trecat,et al.  Power systems fault diagnosis using Petri nets , 1997 .

[139]  Kris Villez,et al.  Performance evaluation of fault detection methods for wastewater treatment processes , 2011, Biotechnology and bioengineering.

[140]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[141]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[142]  Jay Lee,et al.  Robust performance degradation assessment methods for enhanced rolling element bearing prognostics , 2003, Adv. Eng. Informatics.

[143]  Ding-Wen Yu,et al.  Fault diagnosis for a hydraulic drive system using a parameter-estimation method , 1997 .

[144]  Slim Tnani,et al.  Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines , 2006, IEEE Transactions on Industrial Electronics.

[145]  R. Peuget,et al.  Fault detection and isolation on a PWM inverter by knowledge-based model , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[146]  E. C. Larson,et al.  Model-based sensor and actuator fault detection and isolation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[147]  P. J. Griffin,et al.  A combined ANN and expert system tool for transformer fault diagnosis , 1998 .

[148]  Sung-Hoon Ahn,et al.  Condition monitoring and fault detection of wind turbines and related algorithms: A review , 2009 .

[149]  S. S. Venkata,et al.  A fuzzy expert system for the integrated fault diagnosis , 2000 .

[150]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[151]  Junghui Chen,et al.  Dynamic process fault monitoring based on neural network and PCA , 2002 .

[152]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[153]  Chris K. Mechefske,et al.  Fault detection and diagnosis in low speed rolling element bearings Part II: The use of nearest neighbour classification , 1992 .

[154]  S. Poyhonen,et al.  Fault diagnostics of an electrical machine with multiple support vector classifiers , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[155]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[156]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[157]  Su Xu Techniques for Real-Time Tire Health Assessment and Prognostics under Dynamic Operating Conditions , 2011 .

[158]  Thomas G. Habetler,et al.  An unsupervised, on-line system for induction motor fault detection using stator current monitoring , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[159]  Zdzislaw Kowalczuk,et al.  Model based diagnosis for automotive engines-algorithm development and testing on a production vehicle , 1995, IEEE Trans. Control. Syst. Technol..

[160]  Yong-Hua Song,et al.  Fault diagnosis of electric power systems based on fuzzy Petri nets , 2004 .

[161]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[162]  Amit Banerjee,et al.  Validating clusters using the Hopkins statistic , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[163]  Piero P. Bonissone,et al.  Similarity Measures for Case-Based Reasoning Systems , 1992, IPMU.

[164]  Lei Yang,et al.  Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems , 2012 .

[165]  J. G. Skellam,et al.  A New Method for determining the Type of Distribution of Plant Individuals , 1954 .

[166]  Peter L. Lee,et al.  An integrated neural network/expert system approach for fault diagnosis , 1993 .

[167]  D. Altman,et al.  Statistics Notes: Diagnostic tests 2: predictive values , 1994, BMJ.

[168]  G. W. Milligan,et al.  Methodology Review: Clustering Methods , 1987 .

[169]  Elena Deza,et al.  Dictionary of distances , 2006 .

[170]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[171]  Rolf Isermann,et al.  Fault-diagnosis systems : an introduction from fault detection to fault tolerance , 2006 .

[172]  Ruxu Du,et al.  Hidden Markov Model based fault diagnosis for stamping processes , 2004 .

[173]  Chul-Won Park,et al.  Fuzzy logic-based relaying for large power transformer protection , 2003 .

[174]  P. Holgate,et al.  Some New Tests of Randomness , 1965 .

[175]  Masafumi Hashimoto,et al.  Sensor fault detection and identification in dead-reckoning system of mobile robot: interacting multiple model approach , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[176]  Junghui Chen,et al.  On-line batch process monitoring using dynamic PCA and dynamic PLS models , 2002 .

[177]  B. Singh,et al.  A review of stator fault monitoring techniques of induction motors , 2005, IEEE Transactions on Energy Conversion.

[178]  Mark A. Kramer,et al.  A rule‐based approach to fault diagnosis using the signed directed graph , 1987 .

[179]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Hybrid Approaches for Case Retrieval and Adaptation , 2003, KI.

[180]  Antero Arkkio,et al.  Detection of stator winding fault in induction motor using fuzzy logic , 2008, Appl. Soft Comput..

[181]  Xiaohong Yuan,et al.  Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory , 2007, Inf. Fusion.

[182]  Anil K. Jain,et al.  Adaptive clustering ensembles , 2004, ICPR 2004.

[183]  Piero P. Bonissone,et al.  Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer Learning, Fuzzy Similarity, and Evolutionary Design Process , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[184]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[185]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[186]  Ten-Huei Guo,et al.  Fault detection and diagnosis in propulsion systems - A fault parameter estimation approach , 1994 .

[187]  Jay Lee,et al.  A novel method for machine performance degradation assessment based on fixed cycle features test , 2009 .

[188]  Bo-Suk Yang,et al.  Case-based reasoning system with Petri nets for induction motor fault diagnosis , 2004, Expert Syst. Appl..

[189]  J. C. Gerdes,et al.  A probabilistic approach to residual processing for vehicle fault detection , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[190]  Samuel H. Huang,et al.  System health monitoring and prognostics — a review of current paradigms and practices , 2006 .

[191]  Mohamed Benbouzid,et al.  A simple fuzzy logic approach for induction motors stator condition monitoring , 2001, IEMDC 2001. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485).

[192]  Cai Zi-xing,et al.  Fault Diagnosis and Fault Tolerant Control for Wheeled Mobile Robots under Unknown Environments: A Survey , 2005 .

[193]  William F. Punch,et al.  A Comparison of Resampling Methods for Clustering Ensembles , 2004, IC-AI.

[194]  Qian Suxiang,et al.  Transformer Power Fault Diagnosis System Design Based On The HMM Method , 2007, 2007 IEEE International Conference on Automation and Logistics.

[195]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[196]  Antonio Marcus Nogueira Lima,et al.  Fault detection of open-switch damage in voltage-fed PWM motor drive systems , 2003 .

[197]  Miquel Sànchez-Marrè,et al.  An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning , 2005, ICCBR.

[198]  Ian D. Walker,et al.  Fault detection for robot manipulators with parametric uncertainty: a prediction-error-based approach , 2000, IEEE Trans. Robotics Autom..

[199]  Mark Schwabacher,et al.  A Survey of Data -Driven Prognostics , 2005 .

[200]  Tianyi Wang,et al.  Trajectory Similarity Based Prediction for Remaining Useful Life Estimation , 2010 .

[201]  Erkki Oja,et al.  Engineering applications of the self-organizing map , 1996, Proc. IEEE.

[202]  Ron Shamir,et al.  CLICK and EXPANDER: a system for clustering and visualizing gene expression data , 2003, Bioinform..

[203]  K. I. Ramachandran,et al.  Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing , 2007 .

[204]  Boris G. Mirkin,et al.  Choosing the number of clusters , 2011, Wiley Interdiscip. Rev. Data Min. Knowl. Discov..

[205]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[206]  Peter Tavner,et al.  Review of condition monitoring of rotating electrical machines , 2008 .

[207]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[208]  Naim Baydar,et al.  DETECTION OF INCIPIENT TOOTH DEFECT IN HELICAL GEARS USING MULTIVARIATE STATISTICS , 2001 .

[209]  Y. C. Chen,et al.  A neural network application to fault diagnosis for robotic manipulator , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[210]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[211]  K. R. Al-Balushi,et al.  Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection , 2003 .

[212]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[213]  Ana L. N. Fred,et al.  Robust data clustering , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[214]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[215]  Nancy Chinchor,et al.  MUC-4 evaluation metrics , 1992, MUC.

[216]  Bo-Suk Yang,et al.  Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors , 2007, Expert Syst. Appl..

[217]  Claire Cardie,et al.  Using Decision Trees to Improve Case-Based Learning , 1993, ICML.

[218]  Peter C. Jurs,et al.  New index for clustering tendency and its application to chemical problems , 1990, J. Chem. Inf. Comput. Sci..

[219]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[220]  G. King,et al.  Information theoretic fault detection , 2005, Proceedings of the 2005, American Control Conference, 2005..

[221]  Song Zhi-huan IMPROVED PCA WITH APPLICATION TO PROCESS MONITORING AND FAULT DIAGNOSIS , 2001 .

[222]  G. Cherry Semiconductor Process Monitoring and Fault Detection with Recursive Multiway PCA Based on a Combined Index , 2002 .