The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans

[1]  D. Deamer,et al.  Liquid-liquid interfaces : theory and methods , 1996 .

[2]  C. Webb,et al.  Ferrous sulphate oxidation using thiobacillus ferrooxidans: a review , 1995 .

[3]  V. Skulachev Chemiosmotic concept of the membrane bioenergetics: What is already clear and what is still waiting for elucidation? , 1994, Journal of bioenergetics and biomembranes.

[4]  R. Blake,et al.  Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron:rusticyanin oxidoreductase. , 1994, Biochemistry.

[5]  J. Schole,et al.  "Radical theory" of oxidative phosphorylation and photophosphorylation. , 1994, Journal of theoretical biology.

[6]  R. Blake,et al.  Enzymes of aerobic respiration on iron. , 1993, FEMS microbiology reviews.

[7]  J. Phillips,et al.  Hypothesis: The electrochemical regulation of metabolism , 1993 .

[8]  O. Tuovinen,et al.  Bacterial Oxidation of Refractory Sulfide Ores for Gold Recovery , 1992 .

[9]  D A Lauffenburger,et al.  Analysis of Mammalian Cell Growth Factor Receptor Dynamics a , 1987, Annals of the New York Academy of Sciences.

[10]  M. Huesemann,et al.  Transport of Substrates and Metabolites and Their Effect on Cell Metabolism (in Butyric‐Acid and Methylotrophic Fermentations) a , 1987, Annals of the New York Academy of Sciences.

[11]  W. Ingledew,et al.  The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans , 1987 .

[12]  B. Verbaan,et al.  An electrochemical model for the leaching of a sphalerite concentrate , 1986 .

[13]  J. Nagle,et al.  Models of localized energy coupling , 1986, Journal of bioenergetics and biomembranes.

[14]  W. Ingledew,et al.  The organization of the respiratory chain of Thiobacillus ferrooxidans , 1986 .

[15]  E. C. Slater,et al.  A hypothesis for the mechanism of respiratory-chain phosphorylation not involving the electrochemical gradient of protons as obligatory intermediate. , 1985, Biochimica et biophysica acta.

[16]  F. Gutmann,et al.  A fuel cell model in biological energy conversion , 1985 .

[17]  D. Kell,et al.  Mosaic protonic coupling hypothesis for free energy transduction , 1984, FEBS letters.

[18]  A. P. Harrison The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. , 1984, Annual review of microbiology.

[19]  J. McCarthy,et al.  The Effects of Partial Uncoupling upon the Kinetics of ATP Synthesis by Vesicles from Paracoccus denitrificans and by Bovine Heart Sybmitochondrial Particles , 1983 .

[20]  W J Ingledew,et al.  Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. , 1982, Biochimica et biophysica acta.

[21]  S. Ferguson,et al.  Proton electrochemical gradients and energy-transduction processes. , 1982, Annual review of biochemistry.

[22]  W. Ingledew,et al.  A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. , 1980, Biochimica et biophysica acta.

[23]  J. H. Tuttle,et al.  Adenosine 5'-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions , 1980, Journal of bacteriology.

[24]  P. Mitchell Keilin's respiratory chain concept and its chemiosmotic consequences. , 1979, Science.

[25]  D B Kell,et al.  On the functional proton current pathway of electron transport phosphorylation. An electrodic view. , 1979, Biochimica et biophysica acta.

[26]  J. Bockris,et al.  An electrochemical model of biological energy storage , 1979 .

[27]  D. Nicholls,et al.  Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferro-oxidans. , 1979, The Biochemical journal.

[28]  D. Boxer,et al.  The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferro-oxidans. , 1978, The Biochemical journal.

[29]  R. Williams The history and the hypotheses concerning ATP‐formation by energised protons , 1978, FEBS letters.

[30]  P. Halling,et al.  A proposed mechanism for energy conservation during Fe2+ oxidation by Thiobacillus ferro-oxidans: Chemiosmotic coupling to net H+ influx , 1977 .

[31]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[32]  L. Mandel Active Ionic Transport across Biological Membranes: Possible Role of Electrons and Protons , 1970, Nature.

[33]  J. Bockris A Basic Biological Step? , 1969, Nature.

[34]  P. Mitchell CHEMIOSMOTIC COUPLING IN OXIDATIVE AND PHOTOSYNTHETIC PHOSPHORYLATION , 1966, Biological reviews of the Cambridge Philosophical Society.

[35]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[36]  K. Temple,et al.  AN IRON-OXIDIZING BACTERIUM FROM THE ACID DRAINAGE OF SOME BITUMINOUS COAL MINES , 1950, Journal of bacteriology.

[37]  J. Monod The Growth of Bacterial Cultures , 1949 .

[38]  W. Rudolfs OXIDATION OF IRON PYRITES BY SULFUR‐OXIDIZING ORGANISMS AND THEIR USE FOR MAKING MINERAL PHOSPHATES AVAILABLE , 1922 .