Polarimetric Classification of Radar Echo

Automatic classification of radar returns using the polarimetric variables and environmental conditions is presented in this chapter. General principles of classification are reviewed with emphasis on the fuzzy logic method. Then, the hydrometeor classification algorithm operational on WSR-88D network is described, and other classification algorithms are discussed. The method for melting layer detection as an important part of the most classification schemes is described in detail. A section of the chapter is devoted to detection of hail and estimation of its size together with some verification. Also presented is automated detection of tornado debris signatures in the context of tornado detection, and tracks of detections are plotted along the damage paths of several tornadoes. Automatic detection of convective updrafts is based on the columns of differential reflectivity, and examples are included. A separate section is devoted to classification specifically tailored for winter precipitation. This implies combined use of the polarimetric data and numerical weather prediction model output. Finally, classification of radar returns other than from hydrometeors is described. Specifically, polarimetric methods to identify land and sea clutter, biological scatterers, chaff, smoke plumes, dust storms, and volcanic ash are presented.

[1]  Mark S. Veillette,et al.  Polarimetric Observations of Chaff Using the WSR-88D Network , 2018 .

[2]  Michael Knight,et al.  Spectrum-Time Estimation and Processing (STEP) for Improving Weather Radar Data Quality , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Ian D. Cluckie,et al.  Classification of Ground Clutter and Anomalous Propagation Using Dual-Polarization Weather Radar , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jerry M. Straka,et al.  Testing a Procedure for Automatic Classification of Hydrometeor Types , 2001 .

[5]  V. Chandrasekar,et al.  Polarimetric Measurements in a Severe Hailstorm , 1993 .

[6]  Dusan Zrnic,et al.  Observations of insects and birds with a polarimetric radar , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  John Hubbert,et al.  Life Cycle and Precipitation Formation in a Hybrid-Type Hailstorm Revealed by Polarimetric and Doppler Radar Measurements , 1994 .

[8]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[9]  Van Den Broeke,et al.  Polarimetric Radar Observations of Biological Scatterers in Hurricanes Irene (2011) and Sandy (2012) , 2013 .

[10]  K. Elmore,et al.  Sources of Uncertainty in Precipitation-Type Forecasting , 2014 .

[11]  Danny Scipion,et al.  Detection and characterization of the melting layer based on polarimetric radar scans , 2015 .

[12]  M. V. Broeke,et al.  Polarimetric Radar Observations of Dust Storms at C- and S-Band , 2016 .

[13]  Joseph C. Picca Z DR columns as a predictive tool for hail growth and storm evolution , 2010 .

[14]  Alexander V. Ryzhkov Optimization of the matrix of weights in the polarimetric algorithm for classification of radar echoes , 2007 .

[15]  A. Ryzhkov,et al.  A ZDR Column Detection Algorithm to Examine Convective Storm Updrafts , 2015 .

[16]  Alexander V. Ryzhkov,et al.  Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals , 2012 .

[17]  Jordi Figueras i Ventura,et al.  Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach , 2016 .

[18]  N. Balakrishnan,et al.  Use of Polarization to Characterize Precipitation and Discriminate Large Hail , 1990 .

[19]  Alexander V. Ryzhkov,et al.  Automated Detection of Polarimetric Tornadic Debris Signatures Using a Hydrometeor Classification Algorithm , 2015 .

[20]  Richard Doviak,et al.  A New Approach to Detect Ground Clutter Mixed With Weather Signals , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Frank S. Marzano,et al.  Supervised Fuzzy-Logic Classification of Hydrometeors Using C-Band Weather Radars , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  John K. Westbrook,et al.  Asymmetric Radar Echo Patterns from Insects , 2015 .

[23]  John M. Brown Improvement and testing of WRF physics options for application to Rapid Refresh and High Resolution Rapid Refresh , 2011 .

[24]  V. Chandrasekar,et al.  A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation , 2014 .

[25]  Alexander V. Ryzhkov,et al.  The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS , 2009 .

[26]  V. Chandrasekar,et al.  Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  R. Houze,et al.  Microphysics of the Rapid Development of Heavy Convective Precipitation , 2001 .

[28]  Sebastián M. Torres,et al.  Ground Clutter Mitigation for Weather Radars Using the Autocorrelation Spectral Density , 2014 .

[29]  P. A. Watson,et al.  Application of dual linearly polarized radar data to prediction of microwave path attenuation at 10–30 GHz , 1984 .

[30]  Lans P. Rothfusz,et al.  MPING: Crowd-Sourcing Weather Reports for Research , 2014 .

[31]  Alexander Khain,et al.  Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling , 2013 .

[32]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[33]  Sergey Y. Matrosov,et al.  A Polarimetric Radar Approach to Identify Rain, Melting-Layer, and Snow Regions for Applying Corrections to Vertical Profiles of Reflectivity , 2007 .

[34]  Guifu Zhang,et al.  Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms , 2009 .

[35]  A. Ryzhkov The Impact of Beam Broadening on the Quality of Radar Polarimetric Data , 2007 .

[36]  Phillip M. Stepanian,et al.  Dual‐polarization radar products for biological applications , 2016 .

[37]  Robert A. Clark,et al.  Vertically Integrated Liquid Water—A New Analysis Tool , 1972 .

[38]  Frédéric Fabry,et al.  Radar meteorology : principles and practice , 2015 .

[39]  Ronald P. Larkin,et al.  Insects Observed Using Dual-Polarization Radar , 1985 .

[40]  Brenda Dolan,et al.  A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars , 2009 .

[41]  W. Petersen,et al.  Polarimetric Radar Observations of Hail Formation , 2001 .

[42]  A. Witt,et al.  An Enhanced Hail Detection Algorithm for the WSR-88D , 1998 .

[43]  Alexander Khain,et al.  The Anatomy and Physics of Z(DR) Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model , 2014 .

[44]  Dmitri Moisseev,et al.  Recent advances in classification of observations from dual polarization weather radars , 2013 .

[45]  William Moran,et al.  A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis , 2015 .

[46]  Kevin A. Scharfenberg,et al.  THE SEVERE HAZARDS ANALYSIS AND VERIFICATION EXPERIMENT , 2009 .

[47]  V. Chandrasekar,et al.  A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications , 2015 .

[48]  Alexander V. Ryzhkov,et al.  THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification , 2005 .

[49]  D. Zrnic,et al.  Radar polarimetric signatures of fire plumes in Oklahoma , 2008 .

[50]  Stephen J. Frasier,et al.  A New Fuzzy Logic Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars , 2013 .

[51]  Venkatramani Balaji,et al.  Remote Sensing of Hail with a Dual Linear Polarization Radar , 1986 .

[52]  Alexander V. Ryzhkov,et al.  Validation of Polarimetric Hail Detection , 2006 .

[53]  William Moran,et al.  A Cluster-Based Method for Hydrometeor Classification Using Polarimetric Variables. Part II: Classification , 2016 .

[54]  Alexander V. Ryzhkov,et al.  Automatic Designation of the Melting Layer with a Polarimetric Prototype of the WSR-88D Radar , 2005 .

[55]  Tracy Depue,et al.  Performance of the Hail Differential Reflectivity (HDR) Polarimetric Radar Hail Indicator , 2007 .

[56]  D. Atlas,et al.  A Dual-Wavelength Radar Hail Detector , 1973 .

[57]  Spatial and Temporal Characteristics of Polarimetric Tornadic Debris Signatures , 2014 .

[58]  A. Ryzhkov,et al.  Effect of Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm , 2016 .

[59]  E. Williams,et al.  The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel , 2009 .

[60]  Kyoko Ikeda,et al.  Freezing-Level Estimation with Polarimetric Radar , 2004 .

[61]  Gary L. Achtemeier,et al.  The Use of Insects as Tracers for “Clear-Air” Boundary-Layer Studies by Doppler Radar , 1991 .

[62]  A. D. Siggia,et al.  Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation , 2004 .

[63]  Henri Sauvageot,et al.  Hail Detection Using S- and C-Band Radar Reflectivity Difference , 2003 .

[64]  John K. Westbrook,et al.  Partly Cloudy with a Chance of Migration: Weather, Radars, and Aeroecology , 2012 .

[65]  V. Chandrasekar,et al.  A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset , 2013 .

[66]  V. Chandrasekar,et al.  Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification , 2000 .

[67]  Jothiram Vivekanandan,et al.  Multiparameter Radar Measurements in Colorado Convective Storms. Part II: Hail Detection Studies , 1986 .

[68]  D. Atlas,et al.  MULTI-WAVELENGTH RADAR REFLECTIVITY OF HAILSTORMS , 1961 .

[69]  Frank S. Marzano,et al.  Interpretation of observed microwave signatures from ground dual polarization radar and space multi-frequency radiometer for the 2011 Grímsvötn volcanic eruption , 2013 .

[70]  Michael Dixon,et al.  Weather radar ground clutter. Part I: Identification, modeling, and simulation , 2009 .

[71]  A. Ryzhkov,et al.  Discrimination between Winter Precipitation Types Based on Spectral-Bin Microphysical Modeling , 2015 .

[72]  A. Ryzhkov,et al.  A Dual-Wavelength Polarimetric Analysis of the 16 May 2010 Oklahoma City Extreme Hailstorm , 2012 .

[73]  V. Chandrasekar,et al.  Classification and Quantification of Snow Based on Spatial Variability of Radar Reflectivity , 2013 .

[74]  Devis Tuia,et al.  Hydrometeor classification from polarimetric radar measurements: a clustering approach , 2015 .

[75]  Michael Dixon,et al.  Weather Radar Ground Clutter. Part II: Real-Time Identification and Filtering , 2009 .

[76]  Reino Keranen,et al.  Real-time hydrometeor classification for the operational forecasting environment , 2007 .

[77]  Alexander V. Ryzhkov,et al.  Polarimetric Properties of Chaff , 2004 .

[78]  Alexander V. Ryzhkov,et al.  Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements , 1999 .

[79]  A. Waldvogel,et al.  Criteria for the Detection of Hail Cells , 1979 .

[80]  Pengfei Zhang,et al.  Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications , 2013 .

[81]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[82]  A. Ryzhkov,et al.  Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination , 2016 .

[83]  David Hudak,et al.  Application of Dual-Polarization Radar Melting-Layer Detection Algorithm , 2010 .