Avalanche Microwave Noise Sources in Commercial 90-nm CMOS Technology

This paper presents a microwave noise source implemented in a commercial CMOS technology. The circuit is based on the avalanche noise generated by both the source-to-bulk and the drain-to-bulk junctions in reverse breakdown. Two sources of different junction area are fabricated using a standard NMOS transistor in 90-nm CMOS technology having a width of 5- and 20-μm, respectively. From the experimental characterization emerges that the breakdown voltage of the source/drain to bulk diodes is 12.4 V, whereas excess noise ratios (ENRs) of 20 dB (5-μm source) and of 25 dB (20-μm source) are observed at 24 GHz for a current density of about 0.14 mA per square micrometer. Finally, a theoretical explanation of the observed behaviors is proposed by means of an equivalent circuit. The developed noise source can be used in a CMOS system-on-chip (SoC) for a variety of applications ranging from the built-in self test (BIST) of the RF chain to the calibration of fully integrated microwave radiometric sensor.

[1]  Lluís Pradell i Cara,et al.  Measurement of on-wafer transistor noise parameters without a tuner using unrestricted noise sources , 2002 .

[2]  P. Chevalier,et al.  $D$ -Band Total Power Radiometer Performance Optimization in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[3]  Domenico Zito,et al.  Analyses and design of 95-GHz SoC CMOS radiometers for passive body imaging , 2013 .

[4]  Zener Theory and Design Considerations Handbook , 2022 .

[5]  J. Gabelli,et al.  Full counting statistics of avalanche transport: An experiment , 2009, 0907.5368.

[6]  A. Tessmann,et al.  220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications , 2005, IEEE Journal of Solid-State Circuits.

[7]  Luca Roselli,et al.  Fire Detection by Microwave Radiometric Sensors: Modeling a Scenario in the Presence of Obstacles , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[8]  L Belostotski,et al.  A Calibration Method for RF and Microwave Noise Sources , 2011, IEEE Transactions on Microwave Theory and Techniques.

[9]  M. Kanda,et al.  An Improved Solid State Noise Source , 1976 .

[10]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[11]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[12]  Fred W. Voltmer,et al.  NOISE STUDIES IN UNIFORM AVALANCHE DIODES , 1966 .

[13]  F. Alimenti,et al.  SYSTEM-ON-CHIP 36.8 GHZ RADIOMETER FOR SPACE-BASED OBSERVATION OF SOLAR FLARES: FEASIBILITY STUDY IN 0.25 μm SIGE BICMOS TECHNOLOGY , 2012 .

[14]  M. E. Hines,et al.  Electronic tuning effects in the read microwave avalanche diode , 1966 .

[15]  M. C. Maya,et al.  Cold-FET ENR Characterisation Applied to the Measurement of On-Wafer Transistor Noise Parameters , 2002, 2002 32nd European Microwave Conference.

[16]  M. E. Hines,et al.  Noise theory for the read type avalanche diode , 1966 .

[17]  L. Roy,et al.  A novel on-wafer resistive noise source , 1999 .

[18]  N. C. Jarosik Measurements of the low-frequency-gain fluctuations of a 30-GHz high-electron-mobility-transistor cryogenic amplifier , 1996 .

[19]  G. Poe,et al.  Sensitivity of the Total Power Radiometer with Periodic Absolute Calibration , 1981 .

[20]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[21]  Lluís Pradell i Cara,et al.  Noise model of a reverse‐biased cold‐FET applied to the characterization of its ENR , 2004 .

[22]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[23]  L. Roselli,et al.  IF Amplifier Section in 90 nm CMOS Technology for SoC Microwave Radiometers , 2009, IEEE Microwave and Wireless Components Letters.

[24]  A. Hastings The Art of Analog Layout , 2000 .

[25]  Lluís Pradell i Cara,et al.  Extraction of an avalanche diode noise model for its application as on-wafer noise source , 2003 .

[26]  M. Kanda,et al.  An Improved Solid-State Noise Source (Short Papers) , 1976 .

[27]  Y. J. Yoon,et al.  Passive Millimeter-Wave Imaging Module With Preamplified Zero-Bias Detection , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[29]  R. Haitz,et al.  Noise of a Self‐Sustaining Avalanche Discharge in Silicon: Studies at Microwave Frequencies , 1968 .

[30]  Niels Skou,et al.  Microwave Radiometer Systems: Design and Analysis , 1989 .

[31]  James P. Randa,et al.  Characterization and applications of on-wafer diode noise sources , 1998 .

[32]  Cyril Botteron,et al.  Avalanche noise diodes: A compact circuit model compatible with advanced CAD tools , 2015, 2015 International Conference on Noise and Fluctuations (ICNF).