Energetics of Electron–Hole Separation at P3HT/PCBM Heterojunctions

The energetics of electron–hole separation at the prototypical donor–acceptor interface P3HT/PCBM is investigated by means of a combination of molecular dynamics simulations, quantum-chemical methods, and classical microelectrostatic calculations. After validation against semiempirical Valence Bond/Hartree–Fock results, microelectrostatic calculations on a large number of electron–hole (e-h) pairs allowed a statistical study of charge separation energetics in realistic morphologies. Results show that charge separation is an energetically favorable process for about 50% of interfacial e-h pairs, which provides a rationale for the high internal quantum efficiencies reported for P3HT/PCBM heterojunctions. Three effects contribute to overcome the Coulomb attraction between electron and hole: (i) favorable electrostatic landscape across the interface, (ii) electronic polarization, and (iii) interface-induced torsional disorder in P3HT chains. Moreover, the energetic disorder due to the PCBM polar group is show...

[1]  A. Troisi,et al.  Long-range exciton dissociation in organic solar cells , 2012, Proceedings of the National Academy of Sciences.

[2]  S. Meskers,et al.  Influence of Photon Excess Energy on Charge Carrier Dynamics in a Polymer‐Fullerene Solar Cell , 2012 .

[3]  David Beljonne,et al.  Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices† , 2011 .

[4]  M. Kemerink,et al.  Mechanism for Efficient Photoinduced Charge Separation at Disordered Organic Heterointerfaces , 2012 .

[5]  Amy M. Ballantyne,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[6]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[7]  P. Heremans,et al.  On the interface dipole at the pentacene-fullerene heterojunction : A theoretical study , 2010 .

[8]  David Beljonne,et al.  Electronic polarization effects on charge carriers in anthracene: A valence bond study , 2008 .

[9]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[10]  C. Deibel Front Cover (Phys. Status Solidi A 12/2009) , 2009 .

[11]  R. Friend,et al.  The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions , 2011 .

[12]  Martin Heeney,et al.  Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells , 2012 .

[13]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[14]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[15]  T. Savenije,et al.  Mechanism of Mobile Charge Carrier Generation in Blends of Conjugated Polymers and Fullerenes: Significance of Charge Delocalization and Excess Free Energy , 2012 .

[16]  C Zannoni,et al.  Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. , 2013, Accounts of chemical research.

[17]  William R. Salaneck,et al.  Formation of the Interfacial Dipole at Organic‐Organic Interfaces: C60/Polymer Interfaces , 2007 .

[18]  Keng S. Liang,et al.  Simultaneous Use of Small‐ and Wide‐Angle X‐ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells , 2008 .

[19]  Josef Berger,et al.  Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation , 2009 .

[20]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[21]  J. Idé,et al.  Tuning the Interfacial Electronic Structure at Organic Heterojunctions by Chemical Design. , 2012, The journal of physical chemistry letters.

[22]  David Beljonne,et al.  Interfacial dipole and band bending in model pentacene/C60 heterojunctions , 2013 .

[23]  J. Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of chemical research.

[24]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[25]  D. Bradley,et al.  Formation of a Ground‐State Charge‐Transfer Complex in Polyfluorene//[6,6]‐Phenyl‐C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells , 2007 .

[26]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[27]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[28]  R. Munn Microscopic dielectric theory for molecular crystals , 1980 .

[29]  H. Ohkita,et al.  Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. , 2010, Journal of the American Chemical Society.

[30]  Norbert Koch,et al.  Design of Organic Semiconductors from Molecular Electrostatics , 2011 .

[31]  R. Österbacka,et al.  Spontaneous Charge Transfer and Dipole Formation at the Interface Between P3HT and PCBM , 2011 .

[32]  Thomas Strobel,et al.  Origin of the efficient polaron-pair dissociation in polymer-Fullerene blends. , 2009, Physical review letters.

[33]  G. Cerullo,et al.  Hot exciton dissociation in polymer solar cells. , 2013, Nature materials.

[34]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[35]  C. Deibel,et al.  Binding energy of singlet excitons and charge transfer complexes in MDMO‐PPV:PCBM solar cells , 2011, 1110.2671.

[36]  Jean Manca,et al.  Electroluminescence from charge transfer states in polymer solar cells. , 2009, Journal of the American Chemical Society.

[37]  P. Kollman,et al.  New-generation amber united-atom force field. , 2006, The journal of physical chemistry. B.

[38]  Wei Zhang,et al.  Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides , 2006, J. Comput. Chem..

[39]  A. Troisi,et al.  Why Holes and Electrons Separate So Well in Polymer/Fullerene Photovoltaic Cells , 2011 .

[40]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[41]  Charge carrier dissociation and recombination in polymer solar cells , 2009 .

[42]  Paul Heremans,et al.  Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor , 2003 .

[43]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[44]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[45]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[46]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[47]  Markus Hallermann,et al.  Charge-transfer states in conjugated polymer/fullerene blends: Below-gap weakly bound excitons for polymer photovoltaics , 2008 .

[48]  Z. Vardeny,et al.  Optical studies of the charge transfer complex in polythiophene/fullerene blends for organic photovoltaic applications , 2010 .

[49]  Z. G. Soos,et al.  Electronic polarization in pentacene crystals and thin films , 2003 .

[50]  C. Zannoni,et al.  Simulation of Vapor‐Phase Deposition and Growth of a Pentacene Thin Film on C60 (001) , 2011, Advanced materials.

[51]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[52]  Troy Van Voorhis,et al.  Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. , 2010, Journal of the American Chemical Society.

[53]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[54]  Stefan C J Meskers,et al.  Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. , 2008, Journal of the American Chemical Society.

[55]  Adam P. Willard,et al.  Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. , 2013, Nature materials.