Schmidt number for density matrices

We introduce the notion of a Schmidt number of a bipartite density matrix. We show that k-positive maps witness the Schmidt number, in the same way that positive maps witness entanglement. We determine the Schmidt number of the family of states that is made from mixing the completely mixed state and a maximally entangled state. We show that the Schmidt number does not necessarily increase when taking tensor copies of a density matrix $\ensuremath{\rho};$ we give an example of a density matrix for which the Schmidt numbers of $\ensuremath{\rho}$ and $\ensuremath{\rho}\ensuremath{\bigotimes}\ensuremath{\rho}$ are both $2.$

[1]  D. Bruß,et al.  Construction of quantum states with bound entanglement , 1999, quant-ph/9911056.

[2]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[3]  Ashish V. Thapliyal,et al.  Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.

[4]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[5]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[6]  2 1 7 A ug 1 99 9 Conditions for a class of entanglement transformations , 2008 .

[7]  Charles H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[8]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[9]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[10]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[11]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[12]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[13]  J. Tomiyama On the geometry of positive maps in matrix algebras. II , 1985 .

[14]  Man-Duen Choi,et al.  Positive Linear Maps on C*-Algebras , 1972, Canadian Journal of Mathematics.