Learning Infinite Hidden Relational Models

Relational learning analyzes the probabilistic constraints between the attributes of entities and relationships. We extend the expressiveness of relational models by introducing for each entity (or object) an infinite-state latent variable as part of a Dirichlet process (DP) mixture model. It can be viewed as a relational generalization of hidden Markov random field. The information propagates in the intern-connected network via latent variables, reducing the necessary for extensive structure learning. For inference, we explore a Gibbs sampling method based on the Chinese restaurant process. The performance of our model is demonstrated in three applications: the movie recommendation, the function prediction of genes and a medical recommendation system.

[1]  David Heckerman,et al.  Probabilistic Models for Relational Data , 2004 .

[2]  Stefan Wrobel,et al.  Inductive Logic Programming for Knowledge Discovery in Databases , 2001 .

[3]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[4]  Lise Getoor,et al.  From Instances to Classes in Probabilistic Relational Models , 2000, ICML 2000.

[5]  Nando de Freitas,et al.  Nonparametric Bayesian Logic , 2005, UAI.

[6]  Hans-Peter Kriegel,et al.  Dirichlet enhanced relational learning , 2005, ICML.

[7]  David Page,et al.  KDD Cup 2001 report , 2002, SKDD.

[8]  Stefan Wrobel,et al.  Transformation-Based Learning Using Multirelational Aggregation , 2001, ILP.

[9]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[10]  S. Džeroski,et al.  Relational Data Mining , 2001, Springer Berlin Heidelberg.

[11]  Thomas L. Griffiths,et al.  Discovering Latent Classes in Relational Data , 2004 .

[12]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[13]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[14]  Volker Tresp,et al.  An Introduction to Nonparametric Hierarchical Bayesian Modelling with a Focus on Multi-agent Learning , 2003, European Summer School on Multi-AgentControl.

[15]  Volker Tresp Dirichlet Processes and Nonparametric Bayesian Modelling , 2006 .

[16]  Ben Taskar,et al.  Learning Probabilistic Models of Link Structure , 2003, J. Mach. Learn. Res..

[17]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[18]  Luc De Raedt,et al.  Probabilistic logic learning , 2003, SKDD.