Calculation of Fibonacci polynomials for GFSR sequences with low discrepancies
暂无分享,去创建一个
[1] Shu Tezuka. On the discrepancy of GFSR pseudorandom numbers , 1987, JACM.
[2] Masanori Fushimi. An equivalence relation between Tausworthe and GFSR sequences and applications , 1989 .
[3] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[4] J. P. R. Tootill,et al. An Asymptotically Random Tausworthe Sequence , 1973, JACM.
[5] Harald Niederreiter,et al. Optimal multipliers for pseudo-random number generation by the linear congruential method , 1983 .
[6] Shu Tezuka,et al. Lattice structure of pseudorandom sequences from shift-register generators , 1990, 1990 Winter Simulation Conference Proceedings.
[7] Jill P. Mesirov,et al. Continued fraction expansions of rational expressions with irreducible denominators in characteristic 2 , 1987 .
[8] Ted G. Lewis,et al. Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.
[9] Harald Niederreiter,et al. The serial test for digital k-step pseudorandom numbers , 1988 .
[10] Harald Niederreiter,et al. A statistical analysis of generalized feedback shift register pseudorandom number generators , 1987 .
[11] Harald Niederreiter,et al. Figures of merit for digital multistep pseudorandom numbers , 1990 .
[12] R. Tausworthe. Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .
[13] Harald Niederreiter,et al. Rational functions with partial quotients of small degree in their continued fraction expansion , 1987 .