Rapid Convergence to Feature Layer Correspondences

We describe a neural network able to rapidly establish correspondence between neural feature layers. Each of the network's two layers consists of interconnected cortical columns, and each column consists of inhibitorily coupled subpopulations of excitatory neurons. The dynamics of the system builds on a dynamic model of a single column, which is consistent with recent experimental findings. The network realizes dynamic links between its layers with the help of specialized columns that evaluate similarities between the activity distributions of local feature cell populations, are subject to a topology constraint, and can gate the transfer of feature information between the neural layers. The system can robustly be applied to natural images, and correspondences are found in time intervals estimated to be smaller than 100 ms in physiological terms.

[1]  Jörg Lücke,et al.  Hierarchical self-organization of minicolumnar receptive fields , 2004, Neural Networks.

[2]  Norbert Krüger,et al.  Face Recognition and Gender determination , 1995 .

[3]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[4]  David J. Field,et al.  What is the other 85% of V1 doing? , 2004 .

[5]  Jörg Lücke,et al.  A Dynamical Model for Receptive Field Self-organization in V1 Cortical Columns , 2007, ICANN.

[6]  Jörg Lücke,et al.  Rapid Processing and Unsupervised Learning in a Model of the Cortical Macrocolumn , 2004, Neural Computation.

[7]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  PETER E. LOWTHER,et al.  In Memory , 1977, Evolution; international journal of organic evolution.

[9]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[10]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[11]  G. Eaton Rapid processing. , 1961, Medical & biological illustration.

[12]  Jörg Lücke,et al.  Glial cells for information routing? , 2007, Cognitive Systems Research.

[13]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[14]  M. Diamond,et al.  Demonstration of discrete place‐defined columns—segregates—in the cat SI , 1990, The Journal of comparative neurology.

[15]  LinLin Shen,et al.  Face authentication test on the BANCA database , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[16]  Jörg Lücke,et al.  Dynamics of Cortical Columns - Sensitive Decision Making , 2005, ICANN.

[17]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  Thomas Burwick On the relevance of local synchronization for establishing a winner-take-all functionality of the gamma cycle , 2009, Neurocomputing.

[19]  David J. Field,et al.  What Is the Other 85 Percent of V1 Doing , 2006 .

[20]  Jörg Lücke,et al.  Rapid Correspondence Finding in Networks of Cortical Columns , 2006, ICANN.

[21]  Christoph von der Malsburg,et al.  Maplets for correspondence-based object recognition , 2004, Neural Networks.

[22]  M. A. Repucci,et al.  Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex , 2002 .

[23]  D. Buxhoeveden,et al.  The Minicolumn and Evolution of the Brain , 2002, Brain, Behavior and Evolution.

[24]  Rolf P. Würtz,et al.  Combining Feature- and Correspondence-Based Methods for Visual Object Recognition , 2009, Neural Computation.

[25]  Laurenz Wiskott,et al.  Face recognition by dynamic link matching , 1996 .

[26]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[27]  Hartmut Neven,et al.  The Bochum/USC Face Recognition System And How it Fared in the FERET Phase III Test , 1998 .

[28]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[29]  Laurenz Wiskott,et al.  The role of topographical constraints in face recognition , 1999, Pattern Recognition Letters.

[30]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[31]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Geoffrey E. Hinton A Parallel Computation that Assigns Canonical Object-Based Frames of Reference , 1981, IJCAI.

[33]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[34]  R Kree,et al.  Recognition of topological features of graphs and images in neural networks , 1988 .

[35]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[36]  Christoph von der Malsburg,et al.  What Is the Optimal Architecture for Visual Information Routing? , 2007, Neural Computation.

[37]  Jörg Lücke,et al.  Dynamics of Cortical Columns - Self-organization of Receptive Fields , 2005, ICANN.

[38]  A. Peters,et al.  Myelinated axons and the pyramidal cell modules in monkey primary visual cortex , 1996, The Journal of comparative neurology.

[39]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[40]  David W. Arathorn,et al.  Map-Seeking Circuits in Visual Cognition: A Computational Mechanism for Biological and Machine Vision , 2002 .

[41]  Rolf P. Würtz,et al.  Macrocolumns as Decision Units , 2002, ICANN.