A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries.

A well-crystallized single-phase quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 was successfully synthesized. It exhibited excellent cycle performance and high rate capability as a cathode material for sodium-ion batteries.

[1]  Xiao‐Qing Yang,et al.  O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries , 2014 .

[2]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[3]  Mark Asta,et al.  Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium Ion Batteries. , 2014, The journal of physical chemistry letters.

[4]  Marca M. Doeff,et al.  Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials , 2012 .

[5]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[6]  Liquan Chen,et al.  Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. , 2014, Chemistry.

[7]  Lei Liu,et al.  NaTiO2: a layered anode material for sodium-ion batteries , 2015 .

[8]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[9]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[10]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[11]  T. Rojo,et al.  Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery , 2015 .

[12]  T. Shibata,et al.  Fast discharge process of layered cobalt oxides due to high Na+ diffusion , 2015, Scientific Reports.

[13]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[14]  M. Winter,et al.  Low-Cost Orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) Compounds as Anode Materials for Sodium-Ion Batteries , 2015 .

[15]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[16]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[17]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[18]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[19]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[20]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[21]  R. Shanmugam,et al.  Study of Transport Properties and Interfacial Kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0,1/3) as Electrodes for Na-Ion Batteries , 2015 .

[22]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[23]  Jun Ma,et al.  Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries , 2014, Nature Communications.

[24]  Yuliang Cao,et al.  Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[25]  Juliette Billaud,et al.  β-NaMnO2: a high-performance cathode for sodium-ion batteries. , 2014, Journal of the American Chemical Society.

[26]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[27]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[28]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[29]  Yuesheng Wang,et al.  Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries , 2015, Nature Communications.

[30]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[31]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[32]  T. Rojo,et al.  Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process , 2014 .

[33]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.