Embedded Configuration Interaction Description of CO on Cu(111): Resolution of the Site Preference Conundrum

We apply an embedded configuration interaction (ECI) theory to study the adsorption of CO on Cu(111), a well-known case where standard approximations to exchange-correlation within density functional theory (DFT) fail qualitatively to predict the correct site preference and quantitatively overbind CO to both hollow and on-top sites. In ECI theory, the chemisorption region is represented by a cluster consisting of CO and a few (4−10) nearby Cu atoms, with the effect of the periodic metallic background accounted for by an effective one-electron embedding potential derived from periodic DFT. The embedded cluster is then treated using accurate ab initio multireference configuration interaction methods for electron correlation. The ECI theory yields a CO adsorption site preference and binding energy in excellent agreement with experiment, without resorting to ad hoc corrections.

[1]  K. Rieder,et al.  The evolution of CO adsorption on Cu(111) as studied with bare and CO-functionalized scanning tunneling tips , 1999 .

[2]  J. Pritchard,et al.  Interactions of CO molecules adsorbed on Cu(111) , 1979 .

[3]  Emily A Carter,et al.  Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. , 2006, The Journal of chemical physics.

[4]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[5]  Matthias Scheffler,et al.  Towards an exact treatment of exchange and correlation in materials: Application to the "CO adsorption puzzle" and other systems , 2007 .

[6]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[7]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[8]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[9]  J. Kessler,et al.  Chemisorption of CO on differently prepared Cu(111) surfaces , 1977 .

[10]  N. Govind,et al.  Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems , 1999 .

[11]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[12]  H. Ibach,et al.  On the adsorption of CO on Pt(111) , 1982 .

[13]  J. N. Andersen,et al.  Determination of the coverage dependent isosteric heat of adsorption of CO on Rh(1 1 1) by high resolution core level photoemission , 2001 .

[14]  N. Itoh,et al.  All electron scalar relativistic calculations on adsorption of CO on Pt(1 1 1) with full-geometry optimization: a correct estimation for CO site-preference , 2004 .

[15]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[16]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[17]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[18]  A. Rappe,et al.  First-principles extrapolation method for accurate CO adsorption energies on metal surfaces , 2003, cond-mat/0310688.

[19]  C. Wöll,et al.  Determination of Site Specific Adsorption Energies of CO on Copper , 2001 .

[20]  J. Hafner,et al.  CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations , 2004 .

[21]  S. Tsuneyuki,et al.  First-principles study of CO bonding to Pt(111): validity of the Blyholder model , 1998 .

[22]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[23]  N. Govind,et al.  Prediction of electronic excited states of adsorbates on metal surfaces from first principles. , 2001, Physical review letters.

[24]  G. Blyholder,et al.  Molecular Orbital View of Chemisorbed Carbon Monoxide , 1964 .

[25]  E. Baerends,et al.  CO on Pt(111): A puzzle revisited , 2003 .

[26]  W. Kirstein,et al.  CO adsorption studies on pure and Ni-covered Cu(111) surfaces , 1986 .

[27]  Emily A. Carter,et al.  Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states , 2002 .

[28]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[29]  Frank R. Wagner,et al.  The CO/Pt(111) puzzle , 2000 .

[30]  B. Roos,et al.  Lecture notes in quantum chemistry , 1992 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Emily A. Carter,et al.  Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment , 1998 .

[33]  J. Stöhr,et al.  Local probing of the surface chemical bond using X-ray emission spectroscopy , 1997 .

[34]  CO adsorption on Cu(1 1 1) and Cu(0 0 1) surfaces: Improving site preference in DFT calculations , 2004, cond-mat/0408394.

[35]  Avouris,et al.  2 pi resonance features in the electronic spectra of chemisorbed CO. , 1988, Physical review. B, Condensed matter.

[36]  Ohnishi,et al.  Cluster-model study of CO adsorption on the Pt(111) surface. , 1994, Physical review. B, Condensed matter.

[37]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[38]  E. Carter,et al.  Local electronic structure around a single Kondo impurity. , 2006, Nano letters.

[39]  K. Doll,et al.  CO adsorption on the Cu(1 1 1) surface: A density functional study , 2006 .

[40]  N. Govind,et al.  Klüner et al. Reply , 2002 .

[41]  Charles W. Bauschlicher,et al.  A proposal for the proper use of pseudopotentials in molecular orbital cluster model studies of chemisorption , 1984 .

[42]  CO adsorption on the Pt(111) surface: a comparison of a gradient corrected functional and a hybrid functional , 2004, cond-mat/0410732.

[43]  Per E. M. Siegbahn,et al.  The Configuration Interaction Method , 1992 .