A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations

[1]  P. Keightley,et al.  Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. , 2009, Molecular biology and evolution.

[2]  D. Petrov,et al.  Pervasive Natural Selection in the Drosophila Genome? , 2009, PLoS genetics.

[3]  M. Nordborg,et al.  Selection on amino acid substitutions in Arabidopsis. , 2008, Molecular biology and evolution.

[4]  Ryan D. Hernandez,et al.  Assessing the Evolutionary Impact of Amino Acid Mutations in the Human Genome , 2008, PLoS genetics.

[5]  C. Fefferman,et al.  Can one learn history from the allelic spectrum? , 2008, Theoretical population biology.

[6]  P. Keightley,et al.  Joint Inference of the Distribution of Fitness Effects of Deleterious Mutations and Population Demography Based on Nucleotide Polymorphism Frequencies , 2007, Genetics.

[7]  C. Burch,et al.  Experimental Estimate of the Abundance and Effects of Nearly Neutral Mutations in the RNA Virus ϕ6 , 2007, Genetics.

[8]  L. Chao,et al.  Understanding the Evolutionary Fate of Finite Populations: The Dynamics of Mutational Effects , 2007, PLoS biology.

[9]  Chenhui Zhang,et al.  Adaptive genic evolution in the Drosophila genomes , 2007, Proceedings of the National Academy of Sciences.

[10]  Sudhir Kumar,et al.  Higher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation rates. , 2006, Molecular biology and evolution.

[11]  P. Andolfatto,et al.  Selection, Recombination and Demographic History in Drosophila miranda , 2006, Genetics.

[12]  Daniel J. Gaffney,et al.  Genomic Selective Constraints in Murid Noncoding DNA , 2006, PLoS genetics.

[13]  Adam Eyre-Walker,et al.  The genomic rate of adaptive evolution. , 2006, Trends in ecology & evolution.

[14]  Laurence Loewe,et al.  Inferring the distribution of mutational effects on fitness in Drosophila , 2006, Biology Letters.

[15]  P. Green,et al.  Scan of Human Genome Reveals No New Loci Under Ancient Balancing Selection , 2006, Genetics.

[16]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[17]  A. Eyre-Walker,et al.  The rate of adaptive evolution in enteric bacteria. , 2006, Molecular biology and evolution.

[18]  A. Widmer,et al.  Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris , 2006, Journal of evolutionary biology.

[19]  A. Eyre-Walker,et al.  The Distribution of Fitness Effects of New Deleterious Amino Acid Mutations in Humans , 2006, Genetics.

[20]  John J Welch,et al.  Estimating the Genomewide Rate of Adaptive Protein Evolution in Drosophila , 2006, Genetics.

[21]  A. García-Dorado,et al.  Increase of the Spontaneous Mutation Rate in a Long-Term Experiment With Drosophila melanogaster , 2006, Genetics.

[22]  L. Loewe Quantifying the genomic decay paradox due to Muller's ratchet in human mitochondrial DNA. , 2006, Genetical research.

[23]  R. Kassen,et al.  Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria , 2006, Nature Genetics.

[24]  Shu-Mei Chang,et al.  Gene Action of New Mutations in Arabidopsis thaliana , 2006, Genetics.

[25]  B. Charlesworth,et al.  Estimating Selection on Nonsynonymous Mutations , 2006, Genetics.

[26]  Liqing Zhang,et al.  Human SNPs reveal no evidence of frequent positive selection. , 2005, Molecular biology and evolution.

[27]  Eliot C. Bush,et al.  Selective Constraint on Noncoding Regions of Hominid Genomes , 2005, PLoS Comput. Biol..

[28]  Lindell Bromham,et al.  Population size and molecular evolution on islands , 2005, Proceedings of the Royal Society B: Biological Sciences.

[29]  D. Schoen DELETERIOUS MUTATION IN RELATED SPECIES OF THE PLANT GENUS AMSINCKIA WITH CONTRASTING MATING SYSTEMS , 2005, Evolution; international journal of organic evolution.

[30]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[31]  W. G. Hill,et al.  Genetic variability under mutation selection balance. , 2005, Trends in ecology & evolution.

[32]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[33]  J. Bull,et al.  Distributions of Beneficial Fitness Effects in RNA , 2005, Genetics.

[34]  Shamil Sunyaev,et al.  Small fitness effect of mutations in highly conserved non-coding regions. , 2005, Human molecular genetics.

[35]  Toby Johnson,et al.  Theoretical models of selection and mutation on quantitative traits , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Ryan D. Hernandez,et al.  Simultaneous inference of selection and population growth from patterns of variation in the human genome , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Loren H. Rieseberg,et al.  Genetics of Species Differences in the Wild Annual Sunflowers, Helianthus annuus and H. petiolaris , 2005, Genetics.

[38]  Paul Joyce,et al.  An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus , 2005, Nature Genetics.

[39]  A. Reymond,et al.  Conserved non-genic sequences — an unexpected feature of mammalian genomes , 2005, Nature Reviews Genetics.

[40]  M. Lercher,et al.  Explorer Evidence for Widespread Degradation of Gene Control Regions in Hominid Genomes , 2015 .

[41]  David W Hall,et al.  Spontaneous Mutations in Diploid Saccharomyces cerevisiae , 2004, Genetics.

[42]  Dee R. Denver,et al.  High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome , 2004, Nature.

[43]  A. Eyre-Walker,et al.  The genomic rate of adaptive amino acid substitution in Drosophila. , 2004, Molecular biology and evolution.

[44]  Rafael Sanjuán,et al.  The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[46]  A. D. Peters,et al.  Dominance and overdominance of mildly deleterious induced mutations for fitness traits in Caenorhabditis elegans. , 2003, Genetics.

[47]  A. Eyre-Walker,et al.  Estimating the distribution of fitness effects from DNA sequence data: Implications for the molecular clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Ziheng Yang,et al.  Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. , 2003, Molecular biology and evolution.

[49]  S. Williamson,et al.  Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. , 2003, Molecular biology and evolution.

[50]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[51]  H. A. Orr,et al.  The distribution of fitness effects among beneficial mutations. , 2003, Genetics.

[52]  Terence Hwa,et al.  Distinct changes of genomic biases in nucleotide substitution at the time of Mammalian radiation. , 2003, Molecular biology and evolution.

[53]  C. V. Jongeneel,et al.  Numerous potentially functional but non-genic conserved sequences on human chromosome 21 , 2002, Nature.

[54]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[55]  Daniel J. Gaffney,et al.  Quantifying the slightly deleterious mutation model of molecular evolution. , 2002, Molecular biology and evolution.

[56]  Adam Eyre-Walker,et al.  Changing effective population size and the McDonald-Kreitman test. , 2002, Genetics.

[57]  Alexey S Kondrashov,et al.  Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. , 2002, Nucleic acids research.

[58]  C. Geyer,et al.  A COMPREHENSIVE MODEL OF MUTATIONS AFFECTING FITNESS AND INFERENCES FOR ARABIDOPSIS THALIANA , 2002, Evolution; international journal of organic evolution.

[59]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[60]  D. Hartl,et al.  Directional selection and the site-frequency spectrum. , 2001, Genetics.

[61]  R H Borts,et al.  Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. , 2001, Genetics.

[62]  E. Lander,et al.  On the allelic spectrum of human disease. , 2001, Trends in genetics : TIG.

[63]  M. Kreitman,et al.  Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. , 2001, Genome research.

[64]  A. Ogurtsov,et al.  Selective constraint in intergenic regions of human and mouse genomes. , 2001, Trends in genetics : TIG.

[65]  J. Seger,et al.  Elevated rates of nonsynonymous substitution in island birds. , 2001, Molecular biology and evolution.

[66]  M Imhof,et al.  Fitness effects of advantageous mutations in evolving Escherichia coli populations. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Lynch,et al.  THE FITNESS EFFECTS OF SPONTANEOUS MUTATIONS IN CAENORHABDITIS ELEGANS , 2000, Evolution; international journal of organic evolution.

[68]  A. Caballero,et al.  On the average coefficient of dominance of deleterious spontaneous mutations. , 2000, Genetics.

[69]  T. Bataillon Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? , 2000, Heredity.

[70]  Elena,et al.  Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus , 1999 .

[71]  D. Schemske,et al.  Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. D. Peters,et al.  High frequency of cryptic deleterious mutations in Caenorhabditis elegans. , 1999, Science.

[73]  S. Shabalina,et al.  Pattern of selective constraint in C. elegans and C. briggsae genomes. , 1999, Genetical research.

[74]  M. Lynch,et al.  PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION , 1999, Evolution; international journal of organic evolution.

[75]  P. Keightley,et al.  Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. , 1998, Genetics.

[76]  W. J. Dickinson,et al.  Marginal fitness contributions of nonessential genes in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Lynch,et al.  MUTATION AND EXTINCTION: THE ROLE OF VARIABLE MUTATIONAL EFFECTS, SYNERGISTIC EPISTASIS, BENEFICIAL MUTATIONS, AND DEGREE OF OUTCROSSING , 1997, Evolution; international journal of organic evolution.

[78]  A. García-Dorado THE RATE AND EFFECTS DISTRIBUTION OF VIABILITY MUTATION IN DROSOPHILA: MINIMUM DISTANCE ESTIMATION , 1997, Evolution; international journal of organic evolution.

[79]  S. Heath,et al.  Imperfect genes, Fisherian mutation and the evolution of sex. , 1997, Genetics.

[80]  P. Keightley Nature of deleterious mutation load in Drosophila. , 1996, Genetics.

[81]  B. Charlesworth Open Questions , 2020, History of Particle Theory.

[82]  B. Charlesworth,et al.  The pattern of neutral molecular variation under the background selection model. , 1995, Genetics.

[83]  B. Koop,et al.  Human and rodent DNA sequence comparisons: a mosaic model of genomic evolution. , 1995, Trends in genetics : TIG.

[84]  P. Keightley The distribution of mutation effects on viability in Drosophila melanogaster. , 1994, Genetics.

[85]  P. Keightley,et al.  A pleiotropic nonadditive model of variation in quantitative traits. , 1994, Genetics.

[86]  D. Hartl,et al.  Population genetics of polymorphism and divergence. , 1992, Genetics.

[87]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[88]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[89]  O. Ohnishi Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. III. Heterozygous effect of polygenic mutations. , 1977, Genetics.

[90]  J. Crow,et al.  Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. , 1972, Genetics.

[91]  M. Kimura Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. , 1968, Genetical research.

[92]  T MUKAI,et al.  THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. , 1964, Genetics.

[93]  M. Kimura,et al.  On the probability of fixation of mutant genes in a population. , 1962, Genetics.

[94]  A. Bateman THE VIABILITY OF NEAR-NORMAL IRRADIATED CHROMOSOMES , 1959 .

[95]  Motoo Kimura,et al.  Some Problems of Stochastic Processes in Genetics , 1957 .

[96]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[97]  Wen-Hsiung Li,et al.  An evaluation of the molecular clock hypothesis using mammalian DNA sequences , 2007, Journal of Molecular Evolution.

[98]  Richard E. Lenski,et al.  Distribution of fitness effects caused by random insertion mutations in Escherichia coli , 2004, Genetica.

[99]  Ohta Tomoko Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory , 2004, Journal of Molecular Evolution.

[100]  A. García-Dorado,et al.  The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster , 2004, Genetica.

[101]  Carlos D. Bustamante,et al.  Bayesian Analysis Suggests that Most Amino Acid Replacements in Drosophila Are Driven by Positive Selection , 2003, Journal of Molecular Evolution.

[102]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[103]  C. Zeyl,et al.  Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. , 2001, Genetics.

[104]  A. García-Dorado,et al.  The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. , 1998 .

[105]  T. Ohta,et al.  Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. , 1995, Journal of molecular evolution.

[106]  J. Crow,et al.  How much do we know about spontaneous human mutation rates? , 1993, Environmental and molecular mutagenesis.

[107]  J. Crow,et al.  A molecular approach to estimating the human deleterious mutation rate , 1993, Human mutation.

[108]  T. Ohta THE NEARLY NEUTRAL THEORY OF MOLECULAR EVOLUTION , 1992 .

[109]  O. Ohnishi Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. , 1977, Genetics.

[110]  M. Kimura Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. , 1968, Genetical research.

[111]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[112]  Access the most recent version at doi: 10.1101/gr.3942005 References , 2022 .