A phase and space coherent direct imaging method.

A direct imaging algorithm for point and extended targets is presented. The algorithm is based on a physical factorization of the response matrix of a transducer array. The factorization is used to transform a passive target problem to an active source problem and to extract principal components (tones) in a phase consistent way. The multitone imaging function can superpose multiple tones (spatial diversity/aperture of the array) and frequencies (bandwidth of the probing signal) based on phase coherence. The method is a direct imaging algorithm that is simple and efficient since no forward solver or iteration is needed. Robustness of the algorithm with respect to noise is demonstrated via numerical examples.

[1]  James G. Berryman,et al.  Time-reversal analysis for scatterer characterization. , 2003, Physical review letters.

[2]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[3]  D H Chambers,et al.  Analysis of the time-reversal operator for scatterers of finite size. , 2002, The Journal of the Acoustical Society of America.

[4]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[5]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[6]  Hongkai Zhao,et al.  A direct imaging algorithm for extended targets , 2006 .

[7]  Yeong-Hwan Kim Ultrasonic nondestructive testing , 1994 .

[8]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[9]  Mickael Tanter,et al.  Real time inverse filter focusing by iterative time reversal , 2002 .

[10]  Hongkai Zhao,et al.  A direct imaging method using far-field data* , 2007 .

[11]  Mathias Fink,et al.  Revisiting iterative time reversal processing: application to detection of multiple targets. , 2004, The Journal of the Acoustical Society of America.

[12]  Jean-Gabriel Minonzio,et al.  Characterization of subwavelength elastic cylinders with the decomposition of the time-reversal operator: theory and experiment. , 2005, The Journal of the Acoustical Society of America.

[13]  Hongkai Zhao,et al.  Imaging of location and geometry for extended targets using the response matrix , 2004 .

[14]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. I. Basic principles. , 2001, The Journal of the Acoustical Society of America.

[15]  Hongkai Zhao,et al.  Analysis of the Response Matrix for an Extended Target , 2004, SIAM J. Appl. Math..

[16]  Francesco Simonetti,et al.  Time-Reversal MUSIC Imaging of Extended Targets , 2007, IEEE Transactions on Image Processing.

[17]  D H Chambers,et al.  Time reversal for a single spherical scatterer. , 2001, The Journal of the Acoustical Society of America.

[18]  M Fink,et al.  Imaging in the presence of grain noise using the decomposition of the time reversal operator. , 2003, The Journal of the Acoustical Society of America.

[19]  Mathias Fink,et al.  Real time inverse filter focusing through iterative time reversal. , 2004, The Journal of the Acoustical Society of America.

[20]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[21]  Mathias Fink,et al.  Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .

[22]  D. Chambers,et al.  Erratum: Time reversal for a single spherical scatterer [J. Acoust. Soc. Am. 109(6), 2616–2624 (2001)] , 2005 .

[23]  Claire Prada,et al.  Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. , 2003, The Journal of the Acoustical Society of America.

[24]  Hanoch Lev-Ari,et al.  Intensity-only signal-subspace-based imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Mathias Fink,et al.  The iterative time reversal process: Analysis of the convergence , 1995 .

[26]  C. Prada,et al.  Ultrasonic nondestructive testing of scattering media using the decomposition of the time-reversal operator , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  D. Chambers Erratum: “Analysis of the time-reversal operator for scatterers of finite size” [J. Acoust. Soc. Am. 112, 411–419 (2002)] , 2003 .

[28]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media. , 2001, The Journal of the Acoustical Society of America.

[29]  D.H. Chambers,et al.  Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field , 2004, IEEE Transactions on Antennas and Propagation.

[30]  Andrew J. Poggio,et al.  Time reversal and the spatio-temporal matched filter (L) , 2004 .

[31]  Liliana Borcea,et al.  Coherent interferometric imaging in clutter , 2006 .