Models for the association between ordinal variables

In this paper we present marginal association and regression models as an alternative to classical association models for cross-classified ordinal data. It is shown that the methods easily incorporate various types of association structures, are able to include covariate information and generalize easily to multi-way classifications. The proposed approach is used to analyze data from a multicentre psychiatric study.

[1]  M. Becker On the bivariate normal distribution and association models for ordinal categorical data , 1989 .

[2]  G. Molenberghs,et al.  A sensitivity analysis of two multivariate response models , 1994 .

[3]  Monica A. Walker,et al.  Studies in Item Analysis and Prediction. , 1962 .

[4]  Yuchung J. Wang The probability integrals of bivariate normal distributions: A contingency table approach , 1987 .

[5]  R. Plackett A Class of Bivariate Distributions , 1965 .

[6]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[7]  Leo A. Goodman,et al.  Association Models and Canonical Correlation in the Analysis of Cross-Classifications Having Ordered Categories , 1981 .

[8]  F. J. Anscombe,et al.  Computing in statistical science through APL , 1981, Springer series in statistics.

[9]  G. Molenberghs,et al.  Marginal modelling of multivariate categorical data. , 1999, Statistics in medicine.

[10]  J. Dale Global cross-ratio models for bivariate, discrete, ordered responses. , 1986, Biometrics.

[11]  Leo A. Goodman,et al.  How to Ransack Social Mobility Tables and Other Kinds of Cross-Classification Tables , 1969, American Journal of Sociology.

[12]  L. A. Goodman Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories , 1979 .

[13]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[14]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[15]  P. McCullagh,et al.  Multivariate Logistic Models , 1995 .

[16]  Geert Molenberghs,et al.  NON-LINEAR INTEGRAL EQUATIONS TO APPROXIMATE BIVARIATE DENSITIES WITH GIVEN MARGINALS AND DEPENDENCE FUNCTION , 1997 .

[17]  Emmanuel Lesaffre,et al.  Multiple group logistic discrimination , 1986 .

[18]  L. A. Goodman The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or Without Missing Entries , 1985 .

[19]  J. Dale,et al.  Local versus global association for bivariate ordered responses , 1984 .

[20]  Leo A. Goodman,et al.  Association models and the bivariate normal for contingency tables with ordered categories , 1981 .

[21]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[22]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[23]  P. Holland,et al.  Dependence function for continuous bivariate densities , 1987 .

[24]  M. Kendall,et al.  An Introduction to the Theory of Statistics. , 1911 .

[25]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[26]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[27]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .