Integrative biomarker discovery in neurodegenerative diseases

Data mining has been widely applied in biomarker discovery resulting in significant findings of different clinical and biological biomarkers. With developments in technology, from genomics to proteomics analysis, a deluge of data has become available, as well as standardized data repositories. Nonetheless, researchers are still facing important challenges in analyzing the data, especially when considering the complexity of pathways involved in biological processes and diseases. Data from single sources appear unable to explain complex processes, such as those involved in brain‐related disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, thus raising the need for a more comprehensive perspective. A possible solution relies on data and model integration, where several data types are combined to provide complementary views. This in turn can result in the discovery of previously unknown biomarkers by unraveling otherwise hidden relationships between data from different sources, and/or validate such composite biomarkers in more powerful predictive models. WIREs Syst Biol Med 2015, 7:357–379. doi: 10.1002/wsbm.1310

[1]  E. Karageorgiou,et al.  Neuroimaging in Dementia , 2017, Seminars in Neurology.

[2]  Matthew C Kiernan,et al.  Motor neuron disease-frontotemporal dementia: a clinical continuum , 2015, Expert review of neurotherapeutics.

[3]  Christian Burkhardt,et al.  Tracking motor neuron loss in a set of six muscles in amyotrophic lateral sclerosis using the Motor Unit Number Index (MUNIX): a 15-month longitudinal multicentre trial , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[4]  Mamede de Carvalho,et al.  Tackling diagnostic delays in ALS , 2015, The Lancet Neurology.

[5]  Matthew C Kiernan,et al.  Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study , 2015, The Lancet Neurology.

[6]  Carlos Cruchaga,et al.  The epigenetic landscape of Alzheimer's disease , 2014, Nature Neuroscience.

[7]  W. Robberecht,et al.  Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[8]  Gavin Giovannoni,et al.  Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[9]  Nick C Fox,et al.  A data-driven model of biomarker changes in sporadic Alzheimer's disease , 2014, Alzheimer's & Dementia.

[10]  M. Magistris,et al.  S34: The triple stimulation technique (TST) and its clinical applications , 2014, Clinical Neurophysiology.

[11]  K. Kantarci Molecular Imaging of Alzheimer Disease Pathology , 2014, American Journal of Neuroradiology.

[12]  Adriano Chiò,et al.  Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[13]  Klaus-Peter Lesch,et al.  Epigenetically regulated microRNAs in Alzheimer's disease , 2014, Neurobiology of Aging.

[14]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[15]  Elaine Niven,et al.  Screening for cognition and behaviour changes in ALS , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[16]  E. Saracchi,et al.  Emerging candidate biomarkers for Parkinson's disease: a review. , 2014, Aging and disease.

[17]  A. Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[18]  Noga Gershoni-Emek,et al.  Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1(G93A) mouse model. , 2013, Human molecular genetics.

[19]  Magda Tsolaki,et al.  Candidate blood proteome markers of Alzheimer's disease onset and progression: a systematic review and replication study. , 2013, Journal of Alzheimer's disease : JAD.

[20]  Davide Quaranta,et al.  Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[21]  S. Resnick,et al.  Alzheimer's Disease Risk Assessment Using Large-Scale Machine Learning Methods , 2013, PloS one.

[22]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[23]  A. Saykin,et al.  Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. , 2013, American journal of neurodegenerative disease.

[24]  Paul M. Thompson,et al.  Multi-source learning with block-wise missing data for Alzheimer's disease prediction , 2013, KDD.

[25]  Bing Zhang,et al.  Transcriptome Profiling Following Neuronal and Glial Expression of ALS-Linked SOD1 in Drosophila , 2013, G3: Genes, Genomes, Genetics.

[26]  Francisco Herrera,et al.  A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning , 2013, IEEE Transactions on Knowledge and Data Engineering.

[27]  Chris Hyde,et al.  Neuropsychological tests for the diagnosis of Alzheimer's disease dementia and other dementias: a generic protocol for cross-sectional and delayed-verification studies. , 2013, The Cochrane database of systematic reviews.

[28]  Miranka Wirth,et al.  Alzheimer's Disease Neurodegenerative Biomarkers Are Associated with Decreased Cognitive Function but Not β-Amyloid in Cognitively Normal Older Individuals , 2013, The Journal of Neuroscience.

[29]  Onofre Combarros,et al.  Olfaction and imaging biomarkers in premotor LRRK2 G2019S-associated Parkinson disease , 2013, Neurology.

[30]  Kingshuk Roy Choudhury,et al.  Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. , 2013, Radiology.

[31]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[32]  Heidrun Rhode,et al.  Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery , 2013, Proteomics. Clinical applications.

[33]  Vincenzo Bonifati,et al.  The genetics of Parkinson's disease: Progress and therapeutic implications , 2013, Movement disorders : official journal of the Movement Disorder Society.

[34]  Solve Sæbø,et al.  Microarray‐based prediction of Parkinson's disease using clinical data as additional response variables , 2012, Statistics in medicine.

[35]  Mamede de Carvalho,et al.  Phrenic nerve studies predict survival in amyotrophic lateral sclerosis , 2012, Clinical Neurophysiology.

[36]  Rosa Rademakers,et al.  How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? , 2012, Current opinion in neurology.

[37]  G. Malham,et al.  Clinical Outcome and Fusion Rates after the First 30 Extreme Lateral Interbody Fusions , 2012, TheScientificWorldJournal.

[38]  Gerry Shaw,et al.  Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[39]  Jugal K. Kalita,et al.  Discretization in gene expression data analysis: a selected survey , 2012, CCSEIT '12.

[40]  Natasa Przulj,et al.  Biological function through network topology: a survey of the human diseasome , 2012, Briefings in functional genomics.

[41]  M. Rattray,et al.  Gene expression profiling in human neurodegenerative disease , 2012, Nature Reviews Neurology.

[42]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[43]  Erich E. Wanker,et al.  B03 Systematic interactome mapping: understanding the molecular principles of neurodegenerative diseases , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[44]  Paul M. Thompson,et al.  Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data , 2012, NeuroImage.

[45]  Henrik Zetterberg,et al.  Comparison of Brief Cognitive Tests and CSF Biomarkers in Predicting Alzheimer’s Disease in Mild Cognitive Impairment: Six-Year Follow-Up Study , 2012, PloS one.

[46]  S. Brunak,et al.  Mining electronic health records: towards better research applications and clinical care , 2012, Nature Reviews Genetics.

[47]  F. Coppedè,et al.  Genetics and Epigenetics of Parkinson's Disease , 2012, TheScientificWorldJournal.

[48]  João Maroco,et al.  Comparison of Four Verbal Memory Tests for the Diagnosis and Predictive Value of Mild Cognitive Impairment , 2012, Dementia and Geriatric Cognitive Disorders Extra.

[49]  Tao Liu,et al.  Predicting the development of mild cognitive impairment: A new use of pattern recognition , 2012, NeuroImage.

[50]  A. Mechelli,et al.  Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review , 2012, Neuroscience & Biobehavioral Reviews.

[51]  L. Langman,et al.  The challenges of personalized medicine. , 2012, Clinical biochemistry.

[52]  Zhongming Zhao,et al.  Integrative Analysis of Common Neurodegenerative Diseases Using Gene Association, Interaction Networks and mRNA Expression Data , 2012, AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science.

[53]  Palaniappan Sethu,et al.  Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. , 2012, Neurosurgery.

[54]  D. Jennings,et al.  Impaired olfaction and other prodromal features in the Parkinson At‐Risk Syndrome study , 2012, Movement disorders : official journal of the Movement Disorder Society.

[55]  H. Miwa,et al.  Combination of transcranial sonography, olfactory testing, and MIBG myocardial scintigraphy as a diagnostic indicator for Parkinson’s disease , 2012, European journal of neurology.

[56]  J. Hodges,et al.  Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[57]  Harald Hampel,et al.  Neurodegenerative disease biomarkers: Guideposts for disease prevention through early diagnosis and intervention , 2011, Progress in Neurobiology.

[58]  Stefan Teipel,et al.  The future of Alzheimer's disease: The next 10 years , 2011, Progress in Neurobiology.

[59]  Steven Knight,et al.  Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. , 2011, Brain : a journal of neurology.

[60]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[61]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[62]  Frederik Barkhof,et al.  Imaging Alzheimer in 2011 , 2011, Neuroradiology.

[63]  Søren Brunak,et al.  Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts , 2011, PLoS Comput. Biol..

[64]  Jesse S. Jin,et al.  Identification of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Multivariate Predictors , 2011, PloS one.

[65]  R. Altman,et al.  Bioinformatics challenges for personalized medicine , 2011, Bioinform..

[66]  Petro Julkunen,et al.  Combining Transcranial Magnetic Stimulation and Electroencephalography May Contribute to Assess the Severity of Alzheimer's Disease , 2011, International journal of Alzheimer's disease.

[67]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[68]  Daoqiang Zhang,et al.  Multimodal classification of Alzheimer's disease and mild cognitive impairment , 2011, NeuroImage.

[69]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[70]  O. Hardiman,et al.  Amyotrophic lateral sclerosis , 2011, The Lancet.

[71]  P. Aloy,et al.  Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. , 2011, Genome research.

[72]  Leanne M Williams,et al.  An ‘integrative neuroscience’ perspective on ADHD: linking cognition, emotion, brain and genetic measures with implications for clinical support , 2010, Expert review of neurotherapeutics.

[73]  Martina Wiedau-Pazos,et al.  Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. , 2010, Human molecular genetics.

[74]  Merit Cudkowicz,et al.  Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics , 2010, Muscle & nerve.

[75]  Sudha Seshadri,et al.  Genome-wide analysis of genetic loci associated with Alzheimer disease. , 2010, JAMA.

[76]  D. Dexter,et al.  Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis , 2010, Expert review of proteomics.

[77]  Zahinoor Ismail,et al.  Brief cognitive screening instruments: an update , 2010, International journal of geriatric psychiatry.

[78]  Chiou-Lian Lai,et al.  The role of event-related potentials in cognitive decline in Alzheimer’s disease , 2010, Clinical Neurophysiology.

[79]  Bengt Winblad,et al.  Biomarkers for Alzheimer’s disease and other forms of dementia: Clinical needs, limitations and future aspects , 2010, Experimental Gerontology.

[80]  C. Jack,et al.  Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade , 2010, The Lancet Neurology.

[81]  Desmond J. Smith Mitochondrial dysfunction in mouse models of Parkinson’s disease revealed by transcriptomics and proteomics , 2009, Journal of bioenergetics and biomembranes.

[82]  D. Hochstrasser,et al.  Proteomics in human Parkinson's disease research. , 2009, Journal of proteomics.

[83]  Manel Esteller,et al.  Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies , 2009, The Lancet Neurology.

[84]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[85]  D. Eidelberg Metabolic brain networks in neurodegenerative disorders: a functional imaging approach , 2009, Trends in Neurosciences.

[86]  Peter Langfelder,et al.  Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients , 2009, BMC Genomics.

[87]  D. Brooks,et al.  Imaging neurodegeneration in Parkinson's disease. , 2009, Biochimica et biophysica acta.

[88]  Michel Dib,et al.  Biomarkers in Amyotrophic Lateral Sclerosis , 2009, Molecular Diagnosis & Therapy.

[89]  L. Steinman,et al.  Systems biology and its application to the understanding of neurological diseases , 2009, Annals of neurology.

[90]  Allam Appa Rao,et al.  Techniques for integrating ‐omics data , 2009, Bioinformation.

[91]  M. Swash,et al.  Motor unit changes in thoracic paraspinal muscles in amyotrophic lateral sclerosis , 2009, Muscle & nerve.

[92]  E. Beghi,et al.  Prognostic factors in ALS: A critical review , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[93]  Jan Kassubek,et al.  MRI-based functional neuroimaging in ALS: An update , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[94]  B. Mohammadi,et al.  ALSFRS-R score and its ratio: A useful predictor for ALS-progression , 2008, Journal of the Neurological Sciences.

[95]  E. Gordon,et al.  Improving the Prediction of Treatment Response in Depression: Integration of Clinical, Cognitive, Psychophysiological, Neuroimaging, and Genetic Measures , 2008, CNS Spectrums.

[96]  Jennifer Couzin,et al.  Interest Rises in DNA Copy Number Variations--Along With Questions , 2008, Science.

[97]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[98]  Ian M. Donaldson,et al.  iRefIndex: A consolidated protein interaction database with provenance , 2008, BMC Bioinformatics.

[99]  M. Swash,et al.  Electrodiagnostic criteria for diagnosis of ALS , 2008, Clinical Neurophysiology.

[100]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[101]  Evian Gordon,et al.  Integrating genomics and neuromarkers for the era of brain-related personalized medicine. , 2007, Personalized medicine.

[102]  J. Trojanowski,et al.  Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics , 2007, Nature Reviews Drug Discovery.

[103]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[104]  Eric M Reiman,et al.  Genetics, transcriptomics, and proteomics of Alzheimer's disease. , 2006, The Journal of clinical psychiatry.

[105]  K. Blennow,et al.  Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study , 2006, The Lancet Neurology.

[106]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[107]  Dimitrios Adamis,et al.  The utility of EEG in dementia: a clinical perspective , 2005, International journal of geriatric psychiatry.

[108]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[109]  Michael Swash,et al.  Quantitating progression in ALS , 2005, Neurology.

[110]  Travis Dunckley,et al.  Discovery and development of biomarkers of neurological disease. , 2005, Drug discovery today.

[111]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2004, Nucleic Acids Res..

[112]  N. Campbell Genetic association database , 2004, Nature Reviews Genetics.

[113]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[114]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[115]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[116]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[117]  D. DeMets,et al.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework , 2001, Clinical pharmacology and therapeutics.

[118]  Giovanni B. Frisoni,et al.  Consensus report of the working group on: 'Molecular and biochemical markers of Alzheimer's disease' , 1998 .

[119]  Pedro C. Miranda,et al.  Magnetic stimulation in Alzheimer’s disease , 1997, Journal of Neurology.

[120]  M. de Carvalho,et al.  Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. , 2015, Clinica chimica acta; international journal of clinical chemistry.

[121]  William R. Hersh,et al.  Information Retrieval for Healthcare , 2015, Healthcare Data Analytics.

[122]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[123]  M. Dejesus-Hernandez,et al.  How do C9ORF72 repeat expansions cause ALS and FTD: can we learn from other non-coding repeat expansion disorders? , 2014 .

[124]  João Maroco,et al.  Prediction of long-term (5 years) conversion to dementia using neuropsychological tests in a memory clinic setting. , 2013, Journal of Alzheimer's disease : JAD.

[125]  S. Madeira,et al.  Discriminating Alzheimer ’ s Disease from Mild Cognitive Impairment using Neuropsychological Data , 2012 .

[126]  Mamede de Carvalho,et al.  Predicting the Need for Non-Invasive Ventilation in Patients with Amyotrophic Lateral Sclerosis , 2012 .

[127]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[128]  Arlindo L. Oliveira,et al.  Identification of Regulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclustering Algorithm , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[129]  N. Gulbahce,et al.  Network medicine: a network-based approach to human disease , 2010, Nature Reviews Genetics.

[130]  Francisco Azuaje,et al.  Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine , 2010 .

[131]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[132]  Michael Primig,et al.  Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. , 2008, Physiological genomics.

[133]  T. Stijnen,et al.  SPECIAL SERIES: MISSING DATA Review: A gentle introduction to imputation of missing values , 2006 .

[134]  M. Kanehisa,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[135]  Nancy Reagan,et al.  Consensus Report of the Working Group on: "Molecular and Biochemical Markers of Alzheimer's Disease" , 1998 .

[136]  R. Chapman,et al.  Please Scroll down for Article Journal of Clinical and Experimental Neuropsychology Predicting Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Neuropsychological Tests and Multivariate Methods , 2022 .

[137]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .