Globular weak $\omega$-categories as models of a type theory
暂无分享,去创建一个
[1] GROTHENDIECK ∞-GROUPOIDS. And Still Another Definition of ∞-categories , 2010 .
[2] André Joyal,et al. Quasi-categories and Kan complexes , 2002 .
[3] Guillaume Brunerie,et al. On the homotopy groups of spheres in homotopy type theory , 2016, ArXiv.
[4] Krzysztof Worytkiewicz,et al. A folk model structure on omega-cat☆☆☆ , 2007, 0712.0617.
[5] Clemens Berger,et al. A Cellular Nerve for Higher Categories , 2002 .
[6] Thomas Streicher. Contextual Categories and Categorical Semantics of Dependent Types , 1991 .
[7] John Cartmell,et al. Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..
[8] Clemens Berger,et al. Monads with arities and their associated theories , 2011, 1101.3064.
[9] Tom Leinster. Higher Operads, Higher Categories , 2003 .
[10] Peter Dybjer,et al. Internal Type Theory , 1995, TYPES.
[11] Ross Street,et al. The algebra of oriented simplexes , 1987 .
[12] Vladimir Voevodsky,et al. A C-system defined by a universe in a category , 2014, 1409.7925.
[13] Thorsten Altenkirch,et al. A Syntactical Approach to Weak omega-Groupoids , 2012, CSL.
[14] Aaron D. Lauda,et al. Higher-dimensional categories: an illustrated guide book , 2004 .
[15] Michael Batanin,et al. Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .
[16] P. Lumsdaine. WEAK ω-CATEGORIES FROM INTENSIONAL TYPE THEORY , 2008 .
[17] P. Gabriel,et al. Lokal α-präsentierbare Kategorien , 1971 .
[18] Samuel Mimram,et al. A type-theoretical definition of weak ω-categories , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[19] Tom Leinster. A Survey of Definitions of n-Category , 2001 .