Applications of DMDs for astrophysical research

A long-standing problem of astrophysical research is how to simultaneously obtain spectra of thousands of sources randomly positioned in the field of view of a telescope. Digital Micromirror Devices, used as optical switches, provide a most powerful solution allowing to design a new generation of instruments with unprecedented capabilities. We illustrate the key factors (opto-mechanical, cryo-thermal, cosmic radiation environment,...) that constrain the design of DMD-based multi-object spectrographs, with particular emphasis on the IR spectroscopic channel onboard the EUCLID mission, currently considered by the European Space Agency for a 2017 launch date.

[1]  Alan F. M. Moorwood,et al.  Report on the Conference Science with the VLT in the ELT Era , 2007 .

[2]  Albert M. Fowler,et al.  Infrared Astronomical Instrumentation , 1998 .

[3]  Wilfried Noell,et al.  Micromirror array for multiobject spectroscopy in ground-based and space telescopes , 2008, Astronomical Telescopes + Instrumentation.

[4]  Patrick Lanzoni,et al.  Characterization of MOEMS devices for the instrumentation of next generation space telescope , 2003, SPIE MOEMS-MEMS.

[5]  David A. Rapchun,et al.  Microshutter array development for the James Webb space telescope , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[6]  D. Kelly,et al.  Microshutter array system for James Webb Space Telescope , 2007, SPIE Optical Engineering + Applications.

[7]  Joseph A. Connelly,et al.  Integration, testing, and performance of the Infrared Multi-Object Spectrometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[8]  Richard Elston,et al.  FLAMINGOS: a multiobject near-IR spectrometer , 1998, Astronomical Telescopes and Instrumentation.

[9]  Kjetil Dohlen,et al.  Performance modeling of JWST near-infrared multi-object spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  Joseph C. Wehlburg,et al.  High Speed 2D Hadamard Transform Spectral Imager , 2003 .

[11]  James B. Breckinridge,et al.  UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III , 2004 .

[12]  David J. Schlegel,et al.  Mass-producing spectra: the SDSS spectrographic system , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Zoran Ninkov,et al.  RITMOS: a micromirror-based multi-object spectrometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  Massimo Robberto,et al.  Discovery of an extraordinarily massive cluster of red supergiants , 2006 .

[15]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Andreas Kelz,et al.  Development of the wide-field IFU PPak , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[18]  Bernard Muschielok,et al.  Successful Commissioning of FORS1 - the First Optical Instrument on the VLT , 1998 .

[19]  M. Robberto Applications of Digital Micromirror Devices to Astronomical Instrumentation , 2009 .

[20]  Karl Glazebrook,et al.  Monster redshift surveys through dispersive slitless imaging: the Baryon Oscillation Probe , 2004 .

[21]  Tomonori Yamada,et al.  MEMS PROCESS SIMULATION AND DEVICE ANALYSIS FOR AN ELECTRO-STATICALLY ACTUATED MICRO-MIRROR , 2001 .

[22]  Ray M. Sharples,et al.  Offspring of SPACE: the spectrograph channel of the ESA Dark Energy Mission EUCLID , 2008, Astronomical Telescopes + Instrumentation.

[23]  Massimo Stiavelli,et al.  A Multi-Object Spectrometer using Micro Mirror Arrays , 1998 .

[24]  Y. Wang,et al.  SPACE: the spectroscopic all-sky cosmic explorer , 2008, 0804.4433.

[25]  Audrey J. Ewin,et al.  Development of individually addressable micromirror arrays for space applications , 2000, SPIE MOEMS-MEMS.

[26]  Tony Farrell,et al.  Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .

[27]  Michael J. Kurtz,et al.  Hectospec, the MMT’s 300 Optical Fiber‐Fed Spectrograph , 2005, astro-ph/0508554.

[28]  Raymond G. Ohl,et al.  Design and performance of a MEMS-based infrared multi-object spectrometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[29]  Carlos Hernandez-Monteagudo,et al.  The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground , 2007, 0707.0288.

[30]  John W. MacKenty,et al.  Commissioning of the IRMOS MEMS spectrometer , 2006, SPIE Astronomical Telescopes + Instrumentation.

[31]  John W. MacKenty,et al.  Observating Techniques with the IRMOS MEMS Spectrometer , 2006 .

[32]  Herbert Shea Reliability of MEMS for space applications , 2006, SPIE MOEMS-MEMS.