Co-degree threshold for rainbow perfect matchings in uniform hypergraphs

Let k and n be two integers, with k ≥ 3, n ≡ 0 (mod k), and n sufficiently large. We determine the (k−1)-degree threshold for the existence of a rainbow perfect matchings in n-vertex k-uniform hypergraph. This implies the result of Rödl, Ruciński, and Szemerédi on the (k − 1)-degree threshold for the existence of perfect matchings in n-vertex k-uniform hypergraphs. In our proof, we identify the extremal configurations of closeness, and consider whether or not the hypergraph is close to the extremal configuration. In addition, we also develop a novel absorbing device and generalize the absorbing lemma of Rödl, Ruciński, and Szemerédi.

[1]  Ron Aharoni,et al.  A Rainbow r-Partite Version of the Erdős–Ko–Rado Theorem , 2016, Combinatorics, Probability and Computing.

[2]  Vojtech Rödl,et al.  Perfect matchings in large uniform hypergraphs with large minimum collective degree , 2009, J. Comb. Theory, Ser. A.

[4]  Daniela Kühn,et al.  Matchings in 3-uniform hypergraphs , 2010, J. Comb. Theory, Ser. B.

[5]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[6]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[7]  Vojtech Rödl,et al.  Perfect matchings in uniform hypergraphs with large minimum degree , 2006, Eur. J. Comb..

[8]  Daniela Kühn,et al.  Matchings in hypergraphs of large minimum degree , 2006, J. Graph Theory.

[9]  Peter Frankl,et al.  On the size of graphs with complete-factors , 1985, J. Graph Theory.

[10]  Andrey Kupavskii Rainbow version of the Erd\H os Matching Conjecture via Concentration , 2021 .

[11]  Xingxing Yu,et al.  Rainbow matchings for 3-uniform hypergraphs , 2020, J. Comb. Theory, Ser. A.

[12]  Hiêp Hàn,et al.  On Perfect Matchings in Uniform Hypergraphs with Large Minimum Vertex Degree , 2009, SIAM J. Discret. Math..

[13]  Imdadullah Khan,et al.  Perfect Matchings in 3-Uniform Hypergraphs with Large Vertex Degree , 2011, SIAM J. Discret. Math..

[14]  Imdadullah Khan,et al.  Perfect matchings in 4-uniform hypergraphs , 2011, J. Comb. Theory, Ser. B.

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Hao Huang,et al.  Degree versions of the Erdős-Ko-Rado theorem and Erdős hypergraph matching conjecture , 2016, J. Comb. Theory, Ser. A.

[17]  Hao Huang,et al.  The Size of a Hypergraph and its Matching Number , 2011, Combinatorics, Probability and Computing.

[18]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[19]  Yi Zhao,et al.  Exact minimum degree thresholds for perfect matchings in uniform hypergraphs , 2012, J. Comb. Theory, Ser. A.

[20]  D. E. Daykin,et al.  SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .

[21]  Yan Wang,et al.  Almost Perfect Matchings in k-Partite k-Graphs , 2018, SIAM J. Discret. Math..

[22]  Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II , 2012, J. Comb. Theory, Ser. A.

[23]  Andrey Kupavskii,et al.  Rainbow matchings in k-partite hypergraphs , 2020, ArXiv.

[25]  Xingxing Yu,et al.  On the rainbow matching conjecture for 3-uniform hypergraphs , 2021, Science China Mathematics.

[26]  Peter Frankl,et al.  Simple juntas for shifted families , 2019, discrete Analysis.