Genetic analysis of 14 families with Schnyder crystalline corneal dystrophy reveals clues to UBIAD1 protein function

Schnyder crystalline corneal dystrophy (SCCD) is a rare autosomal dominant disease characterized by progressive corneal opacification resulting from abnormal deposition of cholesterol and phospholipids. Recently, six different mutations on the UBIAD1 gene on chromosome 1p36 were found to result in SCCD. The purpose of this article is to further characterize the mutation spectrum of SCCD and identify structural and functional consequences for UBIAD1 protein activity. DNA sequencing was performed on samples from 36 individuals from 14 SCCD families. One affected individual was African American and SCCD has not been previously reported in this ethnic group. We identified UBIAD1 mutations in all 14 families which had 30 affected and 6 unaffected individuals. Eight different UBIAD1 mutations, 5 novel (L121F, D118G, and S171P in exon 1, G186R and D236E in exon 2) were identified. In four families with DNA samples from both affected and unaffected individuals, the D118G, G186R, T175I, and G177R mutations cosegregated with SCCD. In combination with our previous report, we have identified the genetic mutation in UBIAD1 in 20 unrelated families with 10 (including 5 reported here), having the N102S mutation. The results suggest that N102S may be a mutation hot spot because the affected families were unrelated including Caucasian and Asian individuals. There was no genotype phenotype correlation except for the T175I mutation which demonstrated prominent diffuse corneal haze, typically without corneal crystals. Protein analysis revealed structural and functional implications of SCCD mutations which may affect UBIAD1 function, ligand binding and interaction with binding partners, like apo E. © 2008 Wiley‐Liss, Inc.

[1]  H. Kuivaniemi,et al.  Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. , 2007, Investigative ophthalmology & visual science.

[2]  J. Bardwell,et al.  The CXXC Motif Is More than a Redox Rheostat* , 2007, Journal of Biological Chemistry.

[3]  M. Gorin,et al.  Identification of mutations in UBIAD1 following exclusion of coding mutations in the chromosome 1p36 locus for Schnyder crystalline corneal dystrophy. , 2007, Molecular vision.

[4]  S. Bowman,et al.  Mutations in the UBIAD1 Gene, Encoding a Potential Prenyltransferase, Are Causal for Schnyder Crystalline Corneal Dystrophy , 2007, PloS one.

[5]  S. Dimauro,et al.  Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. , 2007, Human molecular genetics.

[6]  Arne Elofsson,et al.  PONGO: a web server for multiple predictions of all-alpha transmembrane proteins , 2006, Nucleic Acids Res..

[7]  S. Malkowicz,et al.  An interaction between apolipoprotein E and TERE1 with a possible association with bladder tumor formation , 2005, Journal of cellular biochemistry.

[8]  P. Casey,et al.  Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. , 2004, Journal of molecular biology.

[9]  F. Tost,et al.  Fine mapping of the Schnyder’s crystalline corneal dystrophy locus , 2004, Human Genetics.

[10]  P. Casey,et al.  Structure of mammalian protein geranylgeranyltransferase type‐I , 2003, The EMBO journal.

[11]  F. Tost,et al.  [Schnyder's crystalline corneal dystrophy. Further narrowing of the linkage interval at chromosome 1p34.1-p36?]. , 2003, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[12]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[13]  H. Kuivaniemi,et al.  Fine Mapping of Schnyder’s Crystalline Corneal Dystrophy , 2003 .

[14]  Qiang Xu,et al.  Secretion of apolipoprotein E by brain glia requires protein prenylation and is suppressed by statins , 2002, Brain Research.

[15]  S. Crispin Ocular lipid deposition and hyperlipoproteinaemia , 2002, Progress in Retinal and Eye Research.

[16]  E. Sankila,et al.  In vivo confocal microscopy of a family with Schnyder crystalline corneal dystrophy. , 1999, Ophthalmology.

[17]  R. Meganathan,et al.  Menaquinone (Vitamin K2) Biosynthesis: Localization and Characterization of the menA Gene fromEscherichia coli , 1998, Journal of bacteriology.

[18]  M. Yamada,et al.  Quantitative analysis of lipid deposits from Schnyder’s corneal dystrophy , 1998, The British journal of ophthalmology.

[19]  A. Malandrini,et al.  Schnyder corneal crystalline dystrophy: description of a new family with evidence of abnormal lipid storage in skin fibroblasts. , 1998, American journal of medical genetics.

[20]  X. Wu,et al.  The gene for schnyder's crystalline corneal dystrophy maps to human chromosome 1p34.1-p36. , 1997, Human molecular genetics.

[21]  J. Weiss,et al.  Schnyder crystalline dystrophy sine crystals. Recommendation for a revision of nomenclature. , 1996, Ophthalmology.

[22]  L. Guarente,et al.  Heme binds to a short sequence that serves a regulatory function in diverse proteins. , 1995, The EMBO journal.

[23]  M. Melzer,et al.  Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. , 1994, Biochimica et biophysica acta.

[24]  W R Taylor,et al.  A model recognition approach to the prediction of all-helical membrane protein structure and topology. , 1994, Biochemistry.

[25]  D. Rader,et al.  Panstromal Schnyder's corneal dystrophy. Ultrastructural and histochemical studies. , 1992, Ophthalmology.

[26]  J. Weiss Schnyder's Dystrophy of the Cornea A Swede-Finn Connection , 1992, Cornea.

[27]  T. Kasama,et al.  Effects of cholestanol feeding on corneal dystrophy in mice. , 1991, Biochimica et biophysica acta.

[28]  T. Freddo,et al.  ULTRASTRUCTURAL CHANGES IN THE POSTERIOR LAYERS OF THE CORNEA IN SCHNYDERA'S CRYSTALLINE DYSTROPHY , 1989, Cornea.

[29]  A. Bron Corneal Changes in the Dislipoproteinaemias , 1989, Cornea.

[30]  D. Newsome Retinal dystrophies and degenerations , 1989 .

[31]  J. Krachmer,et al.  Unesterified cholesterol in Schnyder's corneal crystalline dystrophy. , 1987, American journal of ophthalmology.

[32]  S. Crispin,et al.  Dystrophy, degeneration and infiltration of the canine cornea , 1983 .

[33]  Parwaresch Mr,et al.  [Crystalline corneal dystrophy (Schnyder) in the presence of familial type IIa hyperlipoproteinaemia (author's transl)]. , 1977 .

[34]  R. Virchow Ueber parenchymatöse Entzündung , 1852, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[35]  K. Nakai,et al.  PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. , 1999, Trends in biochemical sciences.

[36]  Jérôme Gouzy,et al.  The ProDom database of protein domain families , 1998, Nucleic Acids Res..

[37]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[38]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[39]  S. Crispin,et al.  Crystalline corneal dystrophy in the dog. Histochemical and ultrastructural study. , 1988, Cornea.

[40]  G. Utermann,et al.  Schnyder's dystrophy. Progression and metabolism. , 1986, Ophthalmic paediatrics and genetics.

[41]  H. Thiel,et al.  [Crystalline corneal dystrophy (Schnyder) in the presence of familial type IIa hyperlipoproteinaemia (author's transl)]. , 1977, Klinische Monatsblatter fur Augenheilkunde.

[42]  J. Delleman,et al.  Degeneratio corneae cristallinea hereditaria. A clinical, genetical and histological study. , 1968, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[43]  M. Bonnet,et al.  [SCHNYDER'S CRYSTALLINE DYSTROPHY]. , 1964, Bulletin des societes d'ophtalmologie de France.