Solution-processed molybdenum oxide films by low-temperature annealing for improved silicon surface passivation

[1]  Shuyan Xu,et al.  Surface passivation of crystalline silicon by intrinsic a-Si:H films deposited in remote low frequency inductively coupled plasma , 2019, Applied Surface Science.

[2]  Pingqi Gao,et al.  Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells , 2019, Nano Energy.

[3]  P. Parashar,et al.  Sputter deposited sub-stochiometric MoOx thin film as hole-selective contact layer for silicon based heterojunction devices , 2019, Thin Solid Films.

[4]  Deren Yang,et al.  Negatively charged silicon nitride films for improved p-type silicon surface passivation by low-temperature rapid thermal annealing , 2019, Journal of Physics D: Applied Physics.

[5]  M. Zeman,et al.  High temperature oxidation pre-treatment of textured c-Si wafers passivated by a-Si:H , 2019, Materials Science in Semiconductor Processing.

[6]  Peixun Fan,et al.  Low-temperature laser generated ultrathin aluminum oxide layers for effective c-Si surface passivation , 2019, Applied Surface Science.

[7]  J. Yi,et al.  Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells , 2019, Materials Science in Semiconductor Processing.

[8]  J. Yi,et al.  Versatile Hole Carrier Selective MoOx Contact for High Efficiency Silicon Heterojunction Solar Cells: A Review , 2018, Transactions on Electrical and Electronic Materials.

[9]  R. Brendel,et al.  Surface passivation of crystalline silicon solar cells: Present and future , 2018, Solar Energy Materials and Solar Cells.

[10]  W. Kessels,et al.  Explorative studies of novel silicon surface passivation materials: Considerations and lessons learned , 2018, Solar Energy Materials and Solar Cells.

[11]  S. Glunz,et al.  SiO2 surface passivation layers – a key technology for silicon solar cells , 2018, Solar Energy Materials and Solar Cells.

[12]  C. Ballif,et al.  A passivating contact for silicon solar cells formed during a single firing thermal annealing , 2018, Nature Energy.

[13]  M. Hermle,et al.  Requirements for efficient hole extraction in transition metal oxide-based silicon heterojunction solar cells , 2018, Journal of Applied Physics.

[14]  Zhong-quan Ma,et al.  Bifunctional Hybrid a-SiO x(Mo) Layer for Hole-Selective and Interface Passivation of Highly Efficient MoO x/a-SiO x(Mo)/n-Si Heterojunction Photovoltaic Device. , 2018, ACS applied materials & interfaces.

[15]  Pingqi Gao,et al.  Dopant‐Free and Carrier‐Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives , 2017, Advanced science.

[16]  Jiang Tang,et al.  Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide , 2018 .

[17]  A. Lennon,et al.  Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells , 2017 .

[18]  M. Hermle,et al.  Sputter-deposited WOx and MoOx for hole selective contacts , 2017 .

[19]  C. Voz,et al.  Passivating/hole-selective contacts based on V2O5/SiOx stacks deposited at ambient temperature , 2017 .

[20]  C. Voz,et al.  Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells , 2016 .

[21]  A. Javey,et al.  Efficient silicon solar cells with dopant-free asymmetric heterocontacts , 2016, Nature Energy.

[22]  A. Zaslavsky,et al.  Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films , 2016 .

[23]  Vandana,et al.  Silicon surface passivation using thin HfO2 films by atomic layer deposition , 2015 .

[24]  Junsin Yi,et al.  Surface Passivation Schemes for High-Efficiency c-Si Solar Cells - A Review , 2015 .

[25]  V. Dao,et al.  High-efficiency Silicon Solar Cells: A Review , 2015 .

[26]  Andrea Tomasi,et al.  22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector , 2015 .

[27]  Lingyu Kong,et al.  Detrimental Effects of Oxygen Vacancies in Electrochromic Molybdenum Oxide , 2015 .

[28]  C. Battaglia,et al.  Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells , 2014 .

[29]  S. Glunz,et al.  Efficient carrier-selective p- and n-contacts for Si solar cells , 2014 .

[30]  T. Mikolajick,et al.  Symmetrical Al2O3-based passivation layers for p- and n-type silicon , 2014 .

[31]  C. Battaglia,et al.  Hole selective MoOx contact for silicon heterojunction solar cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[32]  C. Battaglia,et al.  Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. , 2014, ACS nano.

[33]  S. Glunz,et al.  Carrier-selective contacts for Si solar cells , 2014 .

[34]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[35]  Brian E. McCandless,et al.  Characterization of reactively sputtered molybdenum oxide films for solar cell application , 2013 .

[36]  Jianhui Hou,et al.  Low‐Temperature Solution‐Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Hole‐Transport Layer in Organic Electronics , 2013, Advanced materials.

[37]  T. Buonassisi,et al.  Organic Vapor Passivation of Silicon at Room Temperature , 2013, Advanced materials.

[38]  A. Abbas,et al.  Passivation of silicon wafers by Silicon Carbide (SiCx) thin film grown by sputtering , 2011 .

[39]  S. Uthanna,et al.  Characterization of molybdenum oxide films prepared by bias magnetron sputtering , 2009 .

[40]  A. Szekeres,et al.  Crystallization of chemically vapor deposited molybdenum and mixed tungsten/molybdenum oxide films for electrochromic application , 2007 .

[41]  R. H. Cox,et al.  Ohmic contacts for GaAs devices , 1967 .