A universal optical approach to enhancing efficiency of organic-based photovoltaic devices

We report a new optical approach that can be used to enhance light harvesting in many different organic-based photovoltaic cells. A transparent polymer microlens array moulded on the light incident surface increases the light path in the active layer and reduces surface reflection, resulting in a 15–60% relative increase in overall cell efficiency.

[1]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[2]  A. Gombert,et al.  Functional microprism substrate for organic solar cells , 2006 .

[3]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[4]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[5]  Jiangeng Xue,et al.  Perspectives on Organic Photovoltaics , 2010 .

[6]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[7]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[8]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[9]  J. Xue,et al.  Transparent oxide/metal/oxide trilayer electrode for use in top-emitting organic light-emitting diodes , 2011 .

[10]  J. Xue,et al.  Organic Photovoltaic Cells Based on Molecular Donor-Acceptor Heterojunctions , 2010 .

[11]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.

[12]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[13]  O. Inganäs,et al.  Multifolded Polymer Solar Cells on Flexible Substrates , 2008 .

[14]  J. Xue,et al.  Enhancing light harvesting in organic solar cells with pyramidal rear reflectors , 2011 .

[15]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[16]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[17]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[18]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[19]  Wei You,et al.  Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. , 2010, Angewandte Chemie.

[20]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[21]  Jiangeng Xue,et al.  Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices , 2011 .

[22]  Ying Zheng,et al.  Organic photovoltaic cells with vertically aligned crystalline molecular nanorods , 2009 .

[23]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[24]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[25]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[26]  J. Xue,et al.  Enhancing light extraction in organic light-emitting devices via hemispherical microlens arrays fabricated by soft lithography , 2011 .

[27]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .