Using data augmentation via the Gibbs Sampler to incorporate missing covariate structure in linear models for ecological assessments

[1]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[2]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[3]  T. Hesterberg,et al.  Analyzing data with missing values in S-PLUS , 2001 .

[4]  R J Carroll,et al.  Conditional and Unconditional Categorical Regression Models with Missing Covariates , 2000, Biometrics.

[5]  Yang C. Yuan,et al.  Multiple Imputation for Missing Data: Concepts and New Development , 2000 .

[6]  J G Ibrahim,et al.  Monte Carlo EM for Missing Covariates in Parametric Regression Models , 1999, Biometrics.

[7]  M. Paik,et al.  Multiple imputation methods for the missing covariates in generalized estimating equation. , 1997, Biometrics.

[8]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[9]  Joseph G. Ibrahim,et al.  A conditional model for incomplete covariates in parametric regression models , 1996 .

[10]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[11]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[12]  Bradley Efron,et al.  Missing Data, Imputation, and the Bootstrap , 1994 .

[13]  D. Rubin,et al.  Large-sample significance levels from multiply imputed data using moment-based statistics and an F reference distribution , 1991 .

[14]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[15]  J. Ibrahim Incomplete Data in Generalized Linear Models , 1990 .

[16]  Khidir M. Abdelbasit,et al.  Experimental Design for Binary Data , 1983 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  D. Rubin INFERENCE AND MISSING DATA , 1975 .