On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations

We consider approximating the solution of the initial and boundary value problem for the Navier-Stokes equations in bounded twoand three-dimensional domains using a nonstandard Galerkin (finite element) method for the space discretization and the third order accurate, three-step backward differentiation method (coupled with extrapolation for the nonlinear terms) for the time stepping. The resulting scheme requires the solution of one linear system per time step plus the solution of five linear systems for the computation of the required initial conditions; all these linear systems have the same matrix. The resulting approximations of the velocity are shown to have optimal rate of convergence in L2 under suitable restrictions on the discretization parameters of the problem and the size of the solution in an appropriate function space.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  James H. Bramble,et al.  Efficient Higher Order Single Step Methods for Parabolic Problems. Part I. , 1980 .

[3]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[4]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[5]  Marie-Noelle Le Roux,et al.  Méthodes multipas pour des équations paraboliques non linéaires , 1980 .

[6]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[7]  J. Nitsche,et al.  ON DIRICHLET PROBLEMS USING SUBSPACES WITH NEARLY ZERO BOUNDARY CONDITIONS , 1972 .

[8]  R. S. Falk An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations , 1976 .

[9]  P. Jamet,et al.  Numerical solution of the stationary Navier-Stokes equations by finite element methods , 1973, Computing Methods in Applied Sciences and Engineering.

[10]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[11]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[12]  R. Temam Navier-Stokes Equations , 1977 .

[13]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Miloš Zlámal,et al.  Finite element methods for nonlinear parabolic equations , 1977 .

[16]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[17]  Richard E. Ewing,et al.  Incomplete Iteration for Time-Stepping a Galerkin Method for a Quasilinear Parabolic Problem , 1979 .

[18]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .