Bounds on generalized Frobenius numbers
暂无分享,去创建一个
[1] H. F. Blichfeldt. Report on the theory of the geometry of numbers , 1919 .
[2] Ramírez Alfonsin,et al. The diophantine frobenius problem , 2005 .
[3] Ulrich Betke,et al. A generalization of steinhagen’s theorem , 1993 .
[4] Lenny Fukshansky,et al. Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.
[5] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[6] J. L. Thunder. The Number of Solutions of Bounded Height to a System of Linear Equations , 1993 .
[7] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[8] S. Robins,et al. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .
[9] Martin Henk,et al. A Blichfeldt-type inequality for the surface area , 2007, 0705.2088.
[10] Enrique Treviño,et al. The multidimensional Frobenius problem , 2011 .
[11] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[12] S. Lang. Algebraic Number Theory , 1971 .
[13] Lenny Fukshansky,et al. Frobenius Problem and the Covering Radius of a Lattice , 2007, Discret. Comput. Geom..
[14] Charles Chen,et al. The Multi-Dimensional Frobenius Problem 2 , 2006 .
[15] Matthias Beck,et al. An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.
[16] C. A. Rogers,et al. A Note on the Geometry of Numbers , 1949 .
[17] Øystein J. Rødseth. An upper bound for the h-range of the postage stamp problem , 1990 .
[18] Kazuya Kato,et al. Number Theory 1 , 1999 .
[19] Martin Widmer,et al. Lipschitz class, Narrow class, and counting lattice points , 2012 .
[20] Matthias Beck,et al. A formula related to the Frobenius problem in two dimensions , 2004 .
[21] Achill Schürmann,et al. Problems from the Cottonwood room , 2005 .
[22] Antonio Córdoba,et al. Lattice points , 1997 .
[23] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[24] Iskander Aliev,et al. Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..
[25] Iskander Aliev,et al. An optimal lower bound for the Frobenius problem , 2005 .
[26] Harold Davenport,et al. On a Principle of Lipschitz , 1951 .
[27] Jeffrey Shallit,et al. Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.
[28] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[29] Akimichi Takemura,et al. A generalization of the integer linear infeasibility problem , 2008, Discret. Optim..