Bounds on generalized Frobenius numbers

Abstract Let N ≥ 2 and let 1 a 1 ⋯ a N be relatively prime integers. The Frobenius number of this N -tuple is defined to be the largest positive integer that has no representation as ∑ i = 1 N a i x i where x 1 , … , x N are nonnegative integers. More generally, the s -Frobenius number is defined to be the largest positive integer that has precisely s distinct representations like this. We use techniques from the geometry of numbers to give upper and lower bounds on the s -Frobenius number for any nonnegative integer s .

[1]  H. F. Blichfeldt Report on the theory of the geometry of numbers , 1919 .

[2]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[3]  Ulrich Betke,et al.  A generalization of steinhagen’s theorem , 1993 .

[4]  Lenny Fukshansky,et al.  Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.

[5]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[6]  J. L. Thunder The Number of Solutions of Bounded Height to a System of Linear Equations , 1993 .

[7]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[8]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[9]  Martin Henk,et al.  A Blichfeldt-type inequality for the surface area , 2007, 0705.2088.

[10]  Enrique Treviño,et al.  The multidimensional Frobenius problem , 2011 .

[11]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[12]  S. Lang Algebraic Number Theory , 1971 .

[13]  Lenny Fukshansky,et al.  Frobenius Problem and the Covering Radius of a Lattice , 2007, Discret. Comput. Geom..

[14]  Charles Chen,et al.  The Multi-Dimensional Frobenius Problem 2 , 2006 .

[15]  Matthias Beck,et al.  An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.

[16]  C. A. Rogers,et al.  A Note on the Geometry of Numbers , 1949 .

[17]  Øystein J. Rødseth An upper bound for the h-range of the postage stamp problem , 1990 .

[18]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[19]  Martin Widmer,et al.  Lipschitz class, Narrow class, and counting lattice points , 2012 .

[20]  Matthias Beck,et al.  A formula related to the Frobenius problem in two dimensions , 2004 .

[21]  Achill Schürmann,et al.  Problems from the Cottonwood room , 2005 .

[22]  Antonio Córdoba,et al.  Lattice points , 1997 .

[23]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[24]  Iskander Aliev,et al.  Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..

[25]  Iskander Aliev,et al.  An optimal lower bound for the Frobenius problem , 2005 .

[26]  Harold Davenport,et al.  On a Principle of Lipschitz , 1951 .

[27]  Jeffrey Shallit,et al.  Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.

[28]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[29]  Akimichi Takemura,et al.  A generalization of the integer linear infeasibility problem , 2008, Discret. Optim..