Evaluative Language Beyond Bags of Words: Linguistic Insights and Computational Applications

The study of evaluation, affect, and subjectivity is a multidisciplinary enterprise, including sociology, psychology, economics, linguistics, and computer science. A number of excellent computational linguistics and linguistic surveys of the field exist. Most surveys, however, do not bring the two disciplines together to show how methods from linguistics can benefit computational sentiment analysis systems. In this survey, we show how incorporating linguistic insights, discourse information, and other contextual phenomena, in combination with the statistical exploitation of data, can result in an improvement over approaches that take advantage of only one of these perspectives. We first provide a comprehensive introduction to evaluative language from both a linguistic and computational perspective. We then argue that the standard computational definition of the concept of evaluative language neglects the dynamic nature of evaluation, in which the interpretation of a given evaluation depends on linguistic and extra-linguistic contextual factors. We thus propose a dynamic definition that incorporates update functions. The update functions allow for different contextual aspects to be incorporated into the calculation of sentiment for evaluative words or expressions, and can be applied at all levels of discourse. We explore each level and highlight which linguistic aspects contribute to accurate extraction of sentiment. We end the review by outlining what we believe the future directions of sentiment analysis are, and the role that discourse and contextual information need to play.

[1]  Michael Gamon,et al.  Customizing Sentiment Classifiers to New Domains: a Case Study , 2019 .

[2]  Yoong Keok Lee,et al.  Book Review: Automatic Detection of Verbal Deception by Eileen Fitzpatrick, Joan Bachenko and Tommaso Fornaciari , 2015, CL.

[3]  Maite Taboada,et al.  On Being Negative , 2017 .

[4]  Saif Mohammad,et al.  Stance and Sentiment in Tweets , 2016, ACM Trans. Internet Techn..

[5]  Annie Louis,et al.  Book Reviews: Natural Language Processing for Social Media by Atefeh Farzindar and Diana Inkpen , 2015, CL.

[6]  Maite Taboada,et al.  A machine‐learning approach to negation and speculation detection for sentiment analysis , 2016, J. Assoc. Inf. Sci. Technol..

[7]  Nicholas Asher,et al.  Integer Linear Programming for Discourse Parsing , 2016, NAACL.

[8]  Miguel Rebollo,et al.  Sentiment Analysis in Social Networks through Topic modeling , 2016, LREC.

[9]  Ines Rehbein,et al.  Annotating Discourse Relations in Spoken Language: A Comparison of the PDTB and CCR Frameworks , 2016, LREC.

[10]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[11]  Yue Zhang,et al.  Context-Sensitive Twitter Sentiment Classification Using Neural Network , 2016, AAAI.

[12]  Nicholas Asher,et al.  Evaluation in Discourse: a Corpus-Based Study , 2016, Dialogue Discourse.

[13]  Fabrício Benevenuto,et al.  A Benchmark Comparison of State-of-the-Practice Sentiment Analysis Methods , 2015, ArXiv.

[14]  Angelika Fruehauf,et al.  Evaluation In Text Authorial Stance And The Construction Of Discourse , 2016 .

[15]  Philipp Koehn,et al.  Synthesis Lectures on Human Language Technologies , 2016 .

[16]  Erik Cambria,et al.  Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis , 2015 .

[17]  Ekaterina Shutova,et al.  Design and Evaluation of Metaphor Processing Systems , 2015, CL.

[18]  Shafiq R. Joty,et al.  CODRA: A Novel Discriminative Framework for Rhetorical Analysis , 2015, CL.

[19]  Parminder Bhatia,et al.  Better Document-level Sentiment Analysis from RST Discourse Parsing , 2015, EMNLP.

[20]  Véronique Hoste,et al.  The good, the bad and the implicit: a comprehensive approach to annotating explicit and implicit sentiment , 2015, Lang. Resour. Evaluation.

[21]  Marine Carpuat Connotation in Translation , 2015, WASSA@EMNLP.

[22]  Diana Inkpen,et al.  How much does word sense disambiguation help in sentiment analysis of micropost data? , 2015, WASSA@EMNLP.

[23]  Pushpak Bhattacharyya,et al.  Adjective Intensity and Sentiment Analysis , 2015, EMNLP.

[24]  Manfred Stede,et al.  Joint prediction in MST-style discourse parsing for argumentation mining , 2015, EMNLP.

[25]  Paul Buitelaar,et al.  Towards the Extraction of Customer-to-Customer Suggestions from Reviews , 2015, EMNLP.

[26]  Nathalie Aussenac-Gilles,et al.  Towards a Contextual Pragmatic Model to Detect Irony in Tweets , 2015, ACL.

[27]  Yue Zhang,et al.  Target-Dependent Twitter Sentiment Classification with Rich Automatic Features , 2015, IJCAI.

[28]  José Manuel Perea Ortega,et al.  Sentiment analysis system adaptation for multilingual processing: The case of tweets , 2015, Inf. Process. Manag..

[29]  Kiyoaki Shirai,et al.  Topic Modeling based Sentiment Analysis on Social Media for Stock Market Prediction , 2015, ACL.

[30]  Antal van den Bosch,et al.  Signaling sarcasm: From hyperbole to hashtag , 2015, Inf. Process. Manag..

[31]  F. D. Jong,et al.  Using rhetorical structure in sentiment analysis , 2015, Commun. ACM.

[32]  Maite Taboada,et al.  Mapping Different Rhetorical Relation Annotations: A Proposal , 2015, *SEM@NAACL-HLT.

[33]  Vanessa Wei Feng,et al.  RST-style Discourse Parsing and Its Applications in Discourse Analysis , 2015 .

[34]  Hongyu Guo,et al.  Neural Networks for Integrating Compositional and Non-compositional Sentiment in Sentiment Composition , 2015, *SEMEVAL.

[35]  Cristina Bosco,et al.  ValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm , 2015, SemEval@NAACL-HLT.

[36]  Chris Reed,et al.  Combining Argument Mining Techniques , 2015, ArgMining@HLT-NAACL.

[37]  Mihai Surdeanu,et al.  Two Practical Rhetorical Structure Theory Parsers , 2015, NAACL.

[38]  Paolo Rosso,et al.  SemEval-2015 Task 11: Sentiment Analysis of Figurative Language in Twitter , 2015, *SEMEVAL.

[39]  Li Guo,et al.  Feature Selection for Sentiment Classification Using Matrix Factorization , 2015, WWW.

[40]  David Bamman,et al.  Contextualized Sarcasm Detection on Twitter , 2015, ICWSM.

[41]  Maria Salamó,et al.  Genre-Based Stages Classification for Polarity Analysis , 2015, FLAIRS.

[42]  Deepali Arora,et al.  Analytics: Key to Go from Generating Big Data to Deriving Business Value , 2015, 2015 IEEE First International Conference on Big Data Computing Service and Applications.

[43]  Ming Zhou,et al.  Cross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation , 2015, CL.

[44]  Andrea Esuli,et al.  Optimizing Text Quantifiers for Multivariate Loss Functions , 2015, TKDD.

[45]  Jian-Yun Nie,et al.  Mining User Consumption Intention from Social Media Using Domain Adaptive Convolutional Neural Network , 2015, AAAI.

[46]  Gao Cong,et al.  Mining User Intents in Twitter: A Semi-Supervised Approach to Inferring Intent Categories for Tweets , 2015, AAAI.

[47]  Svitlana Volkova,et al.  Inferring Latent User Properties from Texts Published in Social Media , 2015, AAAI.

[48]  Arjun Mukherjee,et al.  Extracting Verb Expressions Implying Negative Opinions , 2015, AAAI.

[49]  Noah A. Smith,et al.  Modeling User Arguments, Interactions, and Attributes for Stance Prediction in Online Debate Forums , 2015, SDM.

[50]  K. P. Chow,et al.  LCCT: A Semi-supervised Model for Sentiment Classification , 2015, NAACL.

[51]  Marilyn A. Walker,et al.  Learning to Recognize Affective Polarity in Similes , 2015, EMNLP.

[52]  Yannick Versley,et al.  Subsentential Sentiment on a Shoestring: A Crosslingual Analysis of Compositional Classification , 2015, HLT-NAACL.

[53]  Byron C. Wallace,et al.  Sparse, Contextually Informed Models for Irony Detection: Exploiting User Communities, Entities and Sentiment , 2015, ACL.

[54]  Hao Wang,et al.  A Sentiment-aligned Topic Model for Product Aspect Rating Prediction , 2014, EMNLP.

[55]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[56]  Giuseppe Carenini,et al.  Abstractive Summarization of Product Reviews Using Discourse Structure , 2014, EMNLP.

[57]  Vincent Ng,et al.  Vote Prediction on Comments in Social Polls , 2014, EMNLP.

[58]  Vincent Ng,et al.  Why are You Taking this Stance? Identifying and Classifying Reasons in Ideological Debates , 2014, EMNLP.

[59]  Iraklis Varlamis,et al.  PYTHIA: Employing Lexical and Semantic Features for Sentiment Analysis , 2014, ECML/PKDD.

[60]  Jure Leskovec,et al.  Exploiting Social Network Structure for Person-to-Person Sentiment Analysis , 2014, TACL.

[61]  Nadia Bellalem,et al.  Synalp-Empathic: A Valence Shifting Hybrid System for Sentiment Analysis , 2014, *SEMEVAL.

[62]  Janyce Wiebe,et al.  Joint Inference and Disambiguation of Implicit Sentiments via Implicature Constraints , 2014, COLING.

[63]  Heng Ji,et al.  Exploring and inferring user–user pseudo‐friendship for sentiment analysis with heterogeneous networks , 2014, Stat. Anal. Data Min..

[64]  Benno Stein,et al.  Modeling Review Argumentation for Robust Sentiment Analysis , 2014, COLING.

[65]  Farah Benamara,et al.  Fine-grained semantic categorization of opinion expressions for consensus detection (Catégorisation sémantique fine des expressions d'opinion pour la détection de consensus) [in French] , 2014, DEFT@TALN.

[66]  Noah A. Smith,et al.  Making the Most of Bag of Words: Sentence Regularization with Alternating Direction Method of Multipliers , 2014, ICML.

[67]  Ming Zhou,et al.  Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis , 2014, AAAI.

[68]  Philipp Cimiano,et al.  An Impact Analysis of Features in a Classification Approach to Irony Detection in Product Reviews , 2014, WASSA@ACL.

[69]  Yejin Choi,et al.  ConnotationWordNet: Learning Connotation over the Word+Sense Network , 2014, ACL.

[70]  Claire Cardie,et al.  Context-aware Learning for Sentence-level Sentiment Analysis with Posterior Regularization , 2014, ACL.

[71]  Jacob Eisenstein,et al.  Representation Learning for Text-level Discourse Parsing , 2014, ACL.

[72]  Dan Klein,et al.  Less Grammar, More Features , 2014, ACL.

[73]  Graeme Hirst,et al.  A Linear-Time Bottom-Up Discourse Parser with Constraints and Post-Editing , 2014, ACL.

[74]  Svitlana Volkova,et al.  Inferring User Political Preferences from Streaming Communications , 2014, ACL.

[75]  Yulia Tsvetkov,et al.  Proceedings of the Ninth International Conference on Language Resources and Evaluation , 2014 .

[76]  Horacio Saggion,et al.  Modelling Irony in Twitter: Feature Analysis and Evaluation , 2014, LREC.

[77]  Janyce Wiebe,et al.  An Account of Opinion Implicatures , 2014, ArXiv.

[78]  Jeannett Martin,et al.  Evolving systemic functional linguistics: beyond the clause , 2014 .

[79]  Xiaohui Yu,et al.  Sentence-Level Sentiment Analysis in the Presence of Modalities , 2014, CICLing.

[80]  Mark G. Lee,et al.  Acknowledging Discourse Function for Sentiment Analysis , 2014, CICLing.

[81]  Horacio Saggion,et al.  Modelling Irony in Twitter , 2014, EACL.

[82]  Yong Ren,et al.  Sentiment Classification in Under-Resourced Languages Using Graph-Based Semi-Supervised Learning Methods , 2014, IEICE Trans. Inf. Syst..

[83]  Michael Wiegand,et al.  Comparing methods for deriving intensity scores for adjectives , 2014, EACL.

[84]  Janyce Wiebe,et al.  Sentiment Propagation via Implicature Constraints , 2014, EACL.

[85]  Diana Maynard,et al.  Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis. , 2014, LREC.

[86]  G. Thompson,et al.  Evaluation in context , 2014 .

[87]  David Voas Towards a Sociology of Attitudes , 2014 .

[88]  Diego Reforgiato Recupero,et al.  Frame-Based Detection of Opinion Holders and Topics: A Model and a Tool , 2014, IEEE Computational Intelligence Magazine.

[89]  Giovanni Semeraro,et al.  A Comparison of Lexicon-based Approaches for Sentiment Analysis of Microblog Posts , 2014, DART@AI*IA.

[90]  Roberto Basili,et al.  A context-based model for Sentiment Analysis in Twitter , 2014, COLING.

[91]  Caroline Brun,et al.  Suggestion Mining: Detecting Suggestions for Improvement in Users' Comments , 2013, Res. Comput. Sci..

[92]  Namita Mittal,et al.  Discourse Based Sentiment Analysis for Hindi Reviews , 2013, PReMI.

[93]  Wei Gao,et al.  Dynamic joint sentiment-topic model , 2013, ACM Trans. Intell. Syst. Technol..

[94]  Po-Ya Angela Wang #Irony or #Sarcasm — A Quantitative and Qualitative Study Based on Twitter , 2013, PACLIC.

[95]  Grégoire Winterstein,et al.  Argumentative Insights from an Opinion Classification Task on a French Corpus , 2013, JSAI-isAI Workshops.

[96]  Fang Li,et al.  A Classification-Based Approach for Implicit Feature Identification , 2013, CCL.

[97]  Floris Bex,et al.  Implementing the argument web , 2013, Commun. ACM.

[98]  Ellen Riloff,et al.  Sarcasm as Contrast between a Positive Sentiment and Negative Situation , 2013, EMNLP.

[99]  Benjamin Van Durme,et al.  Open Domain Targeted Sentiment , 2013, EMNLP.

[100]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[101]  Alex Lascarides,et al.  Grounding Strategic Conversation: Using Negotiation Dialogues to Predict Trades in a Win-Lose Game , 2013, EMNLP.

[102]  Mike Thelwall,et al.  More than Bag-of-Words: Sentence-based Document Representation for Sentiment Analysis , 2013, RANLP.

[103]  Richard Johansson,et al.  Relational Features in Fine-Grained Opinion Analysis , 2013, CL.

[104]  Guodong Zhou,et al.  Active Learning for Cross-domain Sentiment Classification , 2013, IJCAI.

[105]  Wei Hu,et al.  Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks , 2013 .

[106]  Yejin Choi,et al.  Connotation Lexicon: A Dash of Sentiment Beneath the Surface Meaning , 2013, ACL.

[107]  Danushka Bollegala,et al.  Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus , 2013, IEEE Transactions on Knowledge and Data Engineering.

[108]  Gholamreza Haffari,et al.  The Haves and the Have-Nots: Leveraging Unlabelled Corpora for Sentiment Analysis , 2013, ACL.

[109]  Ivan Titov,et al.  A Bayesian Model for Joint Unsupervised Induction of Sentiment, Aspect and Discourse Representations , 2013, ACL.

[110]  Gerard de Melo,et al.  Good, Great, Excellent: Global Inference of Semantic Intensities , 2013, Transactions of the Association for Computational Linguistics.

[111]  Jian Wang,et al.  Opportunity model for e-commerce recommendation: right product; right time , 2013, SIGIR.

[112]  Yajuan Duan,et al.  The Automated Acquisition of Suggestions from Tweets , 2013, AAAI.

[113]  Noah A. Smith,et al.  A Penny for Your Tweets: Campaign Contributions and Capitol Hill Microblogs , 2013, ICWSM.

[114]  David E. Losada,et al.  Sentiment-Based Ranking of Blog Posts Using Rhetorical Structure Theory , 2013, NLDB.

[115]  Meichun Hsu,et al.  Identifying Intention Posts in Discussion Forums , 2013, NAACL.

[116]  Simone Teufel,et al.  Statistical Metaphor Processing , 2013, CL.

[117]  Jacob Eisenstein,et al.  Discourse Connectors for Latent Subjectivity in Sentiment Analysis , 2013, NAACL.

[118]  Antal van den Bosch,et al.  The perfect solution for detecting sarcasm in tweets #not , 2013, WASSA@NAACL-HLT.

[119]  Rui Xia,et al.  Feature Ensemble Plus Sample Selection: Domain Adaptation for Sentiment Classification , 2013, IEEE Intelligent Systems.

[120]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[121]  Nicholas Asher,et al.  Measuring the Effect of Discourse Structure on Sentiment Analysis , 2013, CICLing.

[122]  Nicholas Asher,et al.  Sentiment Composition Using a Parabolic Model , 2013, IWCS.

[123]  Dipankar Das,et al.  Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining , 2013, IEEE Intelligent Systems.

[124]  Amélie Marian,et al.  Improving the quality of predictions using textual information in online user reviews , 2013, Inf. Syst..

[125]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[126]  Masaki Aono,et al.  Sentiment Word Relations with Affect,Judgment, and Appreciation , 2013, IEEE Transactions on Affective Computing.

[127]  Manfred Stede,et al.  Discourse Processing , 2011, NAACL.

[128]  Ido Dagan,et al.  Synthesis Lectures on Human Language Technologies , 2009 .

[129]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[130]  Vincent Ng,et al.  Extra-Linguistic Constraints on Stance Recognition in Ideological Debates , 2013, ACL.

[131]  Byron C. Wallace Computational irony: A survey and new perspectives , 2013, Artificial Intelligence Review.

[132]  Christian Hardmeier,et al.  Discourse in Statistical Machine Translation : A Survey and a Case Study , 2012 .

[133]  Pascal Denis,et al.  Constrained Decoding for Text-Level Discourse Parsing , 2012, COLING.

[134]  Cohan Sujay Carlos,et al.  Intention Analysis for Sales, Marketing and Customer Service , 2012, COLING.

[135]  Meichun Hsu,et al.  A Dictionary-Based Approach to Identifying Aspects Implied by Adjectives for Opinion Mining , 2012, COLING.

[136]  Pushpak Bhattacharyya,et al.  Sentiment Analysis in Twitter with Lightweight Discourse Analysis , 2012, COLING.

[137]  John A. Carroll,et al.  Weakly-supervised Appraisal Analysis , 2012 .

[138]  Andrés Montoyo,et al.  Detecting implicit expressions of emotion in text: A comparative analysis , 2012, Decis. Support Syst..

[139]  Paolo Rosso,et al.  Making objective decisions from subjective data: Detecting irony in customer reviews , 2012, Decis. Support Syst..

[140]  Isa Maks,et al.  A lexicon model for deep sentiment analysis and opinion mining applications , 2012, Decis. Support Syst..

[141]  Gao Cong,et al.  One seed to find them all: mining opinion features via association , 2012, CIKM.

[142]  Robert Hauptman,et al.  The Fall of the Faculty: The Rise of the All-Administrative University and Why It Matters , 2012 .

[143]  Nicholas Asher,et al.  Preference Extraction From Negotiation Dialogues , 2012, ECAI.

[144]  Erik Cambria,et al.  Sentic Computing: Techniques, Tools, and Applications , 2012 .

[145]  Nicholas Asher,et al.  How do Negation and Modality Impact on Opinions? , 2012, ExProM@ACL.

[146]  Claire Cardie,et al.  Extracting Opinion Expressions with semi-Markov Conditional Random Fields , 2012, EMNLP.

[147]  Josef Ruppenhofer,et al.  Semantic frames as an anchor representation for sentiment analysis , 2012, WASSA@ACL.

[148]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[149]  Hong Wang,et al.  Polarity Consistency Checking for Sentiment Dictionaries , 2012, ACL.

[150]  Christopher Potts,et al.  Did It Happen? The Pragmatic Complexity of Veridicality Assessment , 2012, CL.

[151]  Roser Morante,et al.  Modality and Negation: An Introduction to the Special Issue , 2012, CL.

[152]  Stephan Oepen,et al.  Speculation and Negation: Rules, Rankers, and the Role of Syntax , 2012, CL.

[153]  Ludovic Tanguy,et al.  An empirical resource for discovering cognitive principles of discourse organisation: the ANNODIS corpus , 2012, LREC.

[154]  M. Taboada,et al.  The contribution of nonveridical rhetorical relations to evaluation in discourse , 2012 .

[155]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[156]  Mao Ye,et al.  From user comments to on-line conversations , 2012, KDD.

[157]  Luigi Di Caro,et al.  Annotating Irony in a Novel Italian Corpus for Sentiment Analysis , 2012 .

[158]  Martin van den Berg,et al.  Discourse Structure and Sentiment , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[159]  Matthieu Vernier,et al.  Annotating opinion—evaluation of blogs: the Blogoscopy corpus , 2011, Lang. Resour. Evaluation.

[160]  Farah Benamara,et al.  Towards Context-Based Subjectivity Analysis , 2011, IJCNLP.

[161]  Heiner Stuckenschmidt,et al.  Fine-Grained Sentiment Analysis with Structural Features , 2011, IJCNLP.

[162]  Uzay Kaymak,et al.  Polarity analysis of texts using discourse structure , 2011, CIKM '11.

[163]  Bonnie L. Webber,et al.  Discourse structure and language technology , 2011, Natural Language Engineering.

[164]  K. Ahmad Affective Computing and Sentiment Analysis: Emotion, Metaphor and Terminology , 2011 .

[165]  Long Jiang,et al.  User-level sentiment analysis incorporating social networks , 2011, KDD.

[166]  John D. Burger,et al.  Discriminating Gender on Twitter , 2011, EMNLP.

[167]  Xuanjing Huang,et al.  Structural Opinion Mining for Graph-based Sentiment Representation , 2011, EMNLP.

[168]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[169]  Claire Cardie,et al.  Compositional Matrix-Space Models for Sentiment Analysis , 2011, EMNLP.

[170]  Wei Gao,et al.  Unsupervised Discovery of Discourse Relations for Eliminating Intra-sentence Polarity Ambiguities , 2011, EMNLP.

[171]  Martin Ester,et al.  ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews , 2011, SIGIR.

[172]  Guodong Zhou,et al.  Semi-Supervised Learning for Imbalanced Sentiment Classification , 2011, IJCAI.

[173]  Wen-tau Yih,et al.  Domain Adaptation with Ensemble of Feature Groups , 2011, IJCAI.

[174]  HeYulan,et al.  Self-training from labeled features for sentiment analysis , 2011 .

[175]  Deyu Zhou,et al.  Self-training from labeled features for sentiment analysis , 2011, Inf. Process. Manag..

[176]  Andrés Montoyo,et al.  EmotiNet: A Knowledge Base for Emotion Detection in Text Built on the Appraisal Theories , 2011, NLDB.

[177]  Souhila Kaci,et al.  Working with Preferences: Less Is More , 2011, Cognitive Technologies.

[178]  Rada Mihalcea,et al.  Improving the Impact of Subjectivity Word Sense Disambiguation on Contextual Opinion Analysis , 2011, CoNLL.

[179]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[180]  Youngjoong Ko,et al.  Extracting Comparative Entities and Predicates from Texts Using Comparative Type Classification , 2011, ACL.

[181]  Lei Zhang,et al.  Identifying Noun Product Features that Imply Opinions , 2011, ACL.

[182]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[183]  Oscar Täckström,et al.  Semi-supervised latent variable models for sentence-level sentiment analysis , 2011, ACL.

[184]  Danushka Bollegala,et al.  Using Multiple Sources to Construct a Sentiment Sensitive Thesaurus for Cross-Domain Sentiment Classification , 2011, ACL.

[185]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[186]  Gokhan Tur,et al.  Spoken Language Understanding: Systems for Extracting Semantic Information from Speech , 2011 .

[187]  Alena Neviarouskaya,et al.  Compositional Approach for Automatic Recognition of Fine-Grained Affect, Judgment, and Appreciation in Text , 2011 .

[188]  Korris Fu-Lai Chung,et al.  A probabilistic rating inference framework for mining user preferences from reviews , 2011, World Wide Web.

[189]  Zhen Hai,et al.  Implicit Feature Identification via Co-occurrence Association Rule Mining , 2011, CICLing.

[190]  Stephen Shaoyi Liao,et al.  Sentiment community detection in social networks , 2011, iConference '11.

[191]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.

[192]  Mitsuru Ishizuka,et al.  HILDA: A Discourse Parser Using Support Vector Machine Classification , 2010, Dialogue Discourse.

[193]  Virginia Francisco,et al.  Ontological reasoning for improving the treatment of emotions in text , 2010, Knowledge and Information Systems.

[194]  Etienne B. Roesch,et al.  A Blueprint for Affective Computing: A Sourcebook and Manual , 2010 .

[195]  Uzay Kaymak,et al.  Mining Economic Sentiment Using Argumentation Structures , 2010, ER Workshops.

[196]  David Yarowsky,et al.  Classifying latent user attributes in twitter , 2010, SMUC '10.

[197]  Iryna Gurevych,et al.  Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields , 2010, EMNLP.

[198]  Claire Cardie,et al.  Multi-Level Structured Models for Document-Level Sentiment Classification , 2010, EMNLP.

[199]  Ellen Riloff,et al.  Automatically Producing Plot Unit Representations for Narrative Text , 2010, EMNLP.

[200]  Philip Resnik,et al.  Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation , 2010, EMNLP.

[201]  Hongfei Yan,et al.  Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid , 2010, EMNLP.

[202]  Susan Hunston,et al.  Corpus Approaches to Evaluation: Phraseology and Evaluative Language , 2010 .

[203]  Chu-Ren Huang,et al.  Sentiment Classification and Polarity Shifting , 2010, COLING.

[204]  Rui Xia,et al.  Exploring the Use of Word Relation Features for Sentiment Classification , 2010, COLING.

[205]  Gerhard Weikum,et al.  The Bag-of-Opinions Method for Review Rating Prediction from Sparse Text Patterns , 2010, COLING.

[206]  Mitsuru Ishizuka,et al.  Recognition of Affect, Judgment, and Appreciation in Text , 2010, COLING.

[207]  Christopher Potts On the negativity of negation , 2010 .

[208]  Tony Veale,et al.  Detecting Ironic Intent in Creative Comparisons , 2010, ECAI.

[209]  Jianqing Wu,et al.  Evaluation in Media Discourse Analysis of a Newspaper Corpus , 2010, J. Quant. Linguistics.

[210]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[211]  Iryna Gurevych,et al.  Sentence and Expression Level Annotation of Opinions in User-Generated Discourse , 2010, ACL.

[212]  Zhoujun Li,et al.  Comparable Entity Mining from Comparative Questions , 2010, ACL.

[213]  Vered Aharonson,et al.  Last but Definitely Not Least: On the Role of the Last Sentence in Automatic Polarity-Classification , 2010, ACL.

[214]  Isaac G. Councill,et al.  What's great and what's not: learning to classify the scope of negation for improved sentiment analysis , 2010, NeSp-NLP@ACL.

[215]  Dietrich Klakow,et al.  A survey on the role of negation in sentiment analysis , 2010, NeSp-NLP@ACL.

[216]  Daumé,et al.  Domain Adaptation meets Active Learning , 2010, HLT-NAACL 2010.

[217]  Mitsuru Ishizuka,et al.  @AM: Textual Attitude Analysis Model , 2010, HLT-NAACL 2010.

[218]  Niranjan Pedanekar,et al.  Wishful Thinking - Finding suggestions and ’buy’ wishes from product reviews , 2010, HLT-NAACL 2010.

[219]  Noémie Elhadad,et al.  An Unsupervised Aspect-Sentiment Model for Online Reviews , 2010, NAACL.

[220]  Bin Li,et al.  Improving Blog Polarity Classification via Topic Analysis and Adaptive Methods , 2010, HLT-NAACL.

[221]  Kentaro Inui,et al.  Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables , 2010, NAACL.

[222]  Dietrich Klakow,et al.  Convolution Kernels for Opinion Holder Extraction , 2010, NAACL.

[223]  Ari Rappoport,et al.  ICWSM - A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews , 2010, ICWSM.

[224]  Ana M. García-Serrano,et al.  Q-WordNet: Extracting Polarity from WordNet Senses , 2010, LREC.

[225]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[226]  Simone Teufel,et al.  Metaphor Corpus Annotated for Source - Target Domain Mappings , 2010, LREC.

[227]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[228]  Mike Thelwall,et al.  Data mining emotion in social network communication: Gender differences in MySpace , 2010, J. Assoc. Inf. Sci. Technol..

[229]  Andrés Montoyo,et al.  Opinion Polarity Detection - Using Word Sense Disambiguation to Determine the Polarity of Opinions , 2010, ICAART.

[230]  Shlomo Argamon,et al.  Automated learning of appraisal extraction patterns , 2010 .

[231]  Janyce Wiebe,et al.  Subjectivity Word Sense Disambiguation , 2009, EMNLP.

[232]  Kerstin Denecke,et al.  Are SentiWordNet scores suited for multi-domain sentiment classification? , 2009, 2009 Fourth International Conference on Digital Information Management.

[233]  Chunping Li,et al.  Ontology Based Opinion Mining for Movie Reviews , 2009, KSEM.

[234]  Mário J. Silva,et al.  Clues for detecting irony in user-generated contents: oh...!! it's "so easy" ;-) , 2009, TSA@CIKM.

[235]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[236]  Clement T. Yu,et al.  The effect of negation on sentiment analysis and retrieval effectiveness , 2009, CIKM.

[237]  Maite Taboada,et al.  Genre-Based Paragraph Classification for Sentiment Analysis , 2009, SIGDIAL Conference.

[238]  Maite Taboada,et al.  Cross-Linguistic Sentiment Analysis: From English to Spanish , 2009, RANLP.

[239]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[240]  Alok N. Choudhary,et al.  Sentiment Analysis of Conditional Sentences , 2009, EMNLP.

[241]  Lise Getoor,et al.  Supervised and Unsupervised Methods in Employing Discourse Relations for Improving Opinion Polarity Classification , 2009, EMNLP.

[242]  Stephanie Seneff,et al.  Review Sentiment Scoring via a Parse-and-Paraphrase Paradigm , 2009, EMNLP.

[243]  Timothy Baldwin,et al.  Automatic Satire Detection: Are You Having a Laugh? , 2009, ACL.

[244]  Carolyn Penstein Rosé,et al.  Generalizing Dependency Features for Opinion Mining , 2009, ACL.

[245]  Xiaojun Wan,et al.  Co-Training for Cross-Lingual Sentiment Classification , 2009, ACL.

[246]  Swapna Somasundaran,et al.  Recognizing Stances in Online Debates , 2009, ACL.

[247]  B. Liu,et al.  Expanding Domain Sentiment Lexicon through Double Propagation , 2009, IJCAI.

[248]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[249]  Xiaojin Zhu,et al.  May All Your Wishes Come True: A Study of Wishes and How to Recognize Them , 2009, NAACL.

[250]  James Pustejovsky,et al.  FactBank: a corpus annotated with event factuality , 2009, Lang. Resour. Evaluation.

[251]  Yue Lu,et al.  Rated aspect summarization of short comments , 2009, WWW '09.

[252]  Fadi Biadsy,et al.  Contextual Phrase-Level Polarity Analysis Using Lexical Affect Scoring and Syntactic N-Grams , 2009, EACL.

[253]  Shashank Agarwal,et al.  Automatically Classifying Sentences in Full-Text Biomedical Articles into Introduction, Methods, Results and Discussion , 2009, Summit on translational bioinformatics.

[254]  Ronen I. Brafman,et al.  Preference Handling - An Introductory Tutorial , 2009, AI Mag..

[255]  J. Wiebe,et al.  Recognizing Contextual Polarity: An Exploration of Features for Phrase-Level Sentiment Analysis , 2009 .

[256]  Peter Harder,et al.  Evidentiality: Linguistic categories and grammaticalization , 2009 .

[257]  Christiane Fellbaum,et al.  Verbs of Emotion in French and English , 2009 .

[258]  Douglas Walton,et al.  Argumentation Theory: A Very Short Introduction , 2009, Argumentation in Artificial Intelligence.

[259]  Nicholas Asher,et al.  Appraisal of Opinion Expressions in Discourse , 2009 .

[260]  János Csirik,et al.  The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes , 2008, BMC Bioinformatics.

[261]  Claire Cardie,et al.  Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis , 2008, EMNLP.

[262]  Bing Liu,et al.  Mining Opinions in Comparative Sentences , 2008, COLING.

[263]  Claire Cardie,et al.  Topic Identification for Fine-Grained Opinion Analysis , 2008, COLING.

[264]  Nicholas Asher,et al.  Distilling Opinion in Discourse: A Preliminary Study , 2008, COLING.

[265]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[266]  Ivan Titov,et al.  A Joint Model of Text and Aspect Ratings for Sentiment Summarization , 2008, ACL.

[267]  Sabine Bergler,et al.  When Specialists and Generalists Work Together: Overcoming Domain Dependence in Sentiment Tagging , 2008, ACL.

[268]  Theresa Wilson,et al.  Annotating Subjective Content in Meetings , 2008, LREC.

[269]  Swapna Somasundaran,et al.  Finding the Sources and Targets of Subjective Expressions , 2008, LREC.

[270]  Xinying Xu,et al.  Hidden sentiment association in chinese web opinion mining , 2008, WWW.

[271]  Kimberly D. Voll,et al.  Extracting sentiment as a function of discourse structure and topicality , 2008 .

[272]  Shlomo Argamon,et al.  Automatically Determining Attitude Type and Force for Sentiment Analysis , 2007, LTC.

[273]  Maite Taboada,et al.  Not All Words Are Created Equal: Extracting Semantic Orientation as a Function of Adjective Relevance , 2007, Australian Conference on Artificial Intelligence.

[274]  ChengXiang Zhai,et al.  Instance Weighting for Domain Adaptation in NLP , 2007, ACL.

[275]  Zhuo Jing-Schmidt,et al.  Negativity bias in language: A cognitive-affective model of emotive intensifiers , 2007 .

[276]  Mitsuru Ishizuka,et al.  Assessing Sentiment of Text by Semantic Dependency and Contextual Valence Analysis , 2007, ACII.

[277]  Jonathon Read,et al.  Annotating expressions of Appraisal in English , 2007, Language Resources and Evaluation.

[278]  P. Clough,et al.  The affective turn : theorizing the social , 2007 .

[279]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[280]  Mike Wells,et al.  Structured Models for Fine-to-Coarse Sentiment Analysis , 2007, ACL.

[281]  Brian Roark,et al.  The utility of parse-derived features for automatic discourse segmentation , 2007, ACL.

[282]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[283]  R. Kreuz,et al.  Lexical Influences on the Perception of Sarcasm , 2007 .

[284]  Regina Barzilay,et al.  Multiple Aspect Ranking Using the Good Grief Algorithm , 2007, NAACL.

[285]  Shlomo Argamon,et al.  Extracting Appraisal Expressions , 2007, NAACL.

[286]  Philip J. Stone,et al.  The general inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information , 2007 .

[287]  G. Loewenstein,et al.  The Role of Emotion in Economic Behavior , 2007 .

[288]  Diego Reforgiato Recupero,et al.  Sentiment Analysis: Adjectives and Adverbs are Better than Adjectives Alone , 2007, ICWSM.

[289]  Karo Moilanen,et al.  Sentiment Composition , 2007 .

[290]  Manfred Stede,et al.  Identifying Formal and Functional Zones in Film Reviews , 2007, SIGdial.

[291]  Yi Mao,et al.  Isotonic Conditional Random Fields and Local Sentiment Flow , 2006, NIPS.

[292]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[293]  崔圭鉢,et al.  把字句와 주관화(Subjectification) , 2006 .

[294]  김용진 Discourse in the Novel , 2006 .

[295]  Bing Liu,et al.  Identifying comparative sentences in text documents , 2006, SIGIR.

[296]  Maite Taboada,et al.  Applications of Rhetorical Structure Theory , 2006 .

[297]  Claire Cardie,et al.  Joint Extraction of Entities and Relations for Opinion Recognition , 2006, EMNLP.

[298]  Eduard Hovy,et al.  Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text , 2006 .

[299]  Vincent Ng,et al.  Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews , 2006, ACL.

[300]  Bing Liu,et al.  Mining Comparative Sentences and Relations , 2006, AAAI.

[301]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[302]  Xiaojin Zhu,et al.  Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for sentiment categorization , 2006 .

[303]  W. Mann,et al.  Rhetorical Structure Theory: looking back and moving ahead , 2006 .

[304]  Moshe Koppel,et al.  THE IMPORTANCE OF NEUTRAL EXAMPLES FOR LEARNING SENTIMENT , 2006, Comput. Intell..

[305]  Janyce Wiebe,et al.  RECOGNIZING STRONG AND WEAK OPINION CLAUSES , 2006, Comput. Intell..

[306]  Alistair Kennedy,et al.  SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS , 2006, Comput. Intell..

[307]  Kristel Proost,et al.  Speech Act Verbs , 2006 .

[308]  Annie Zaenen,et al.  Contextual Valence Shifters , 2006, Computing Attitude and Affect in Text.

[309]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[310]  Yvette Yannick Mathieu Annotation of Emotions and Feelings in Texts , 2005, ACII.

[311]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[312]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[313]  Janyce Wiebe,et al.  Annotating Attributions and Private States , 2005, FCA@ACL.

[314]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[315]  Hiroya Takamura,et al.  Sentiment Classification Using Word Sub-sequences and Dependency Sub-trees , 2005, PAKDD.

[316]  Ellen Riloff,et al.  Creating Subjective and Objective Sentence Classifiers from Unannotated Texts , 2005, CICLing.

[317]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[318]  Siobhan Chapman Logic and Conversation , 2005 .

[319]  Jeannett Martin,et al.  The Language of Evaluation: Appraisal in English , 2005 .

[320]  Alex Lascarides,et al.  Logics of Conversation , 2005, Studies in natural language processing.

[321]  Alistair Kennedy,et al.  Sentiment Classification of Movie and Product Reviews Using Contextual Valence Shifters , 2005 .

[322]  Eduard Hovy,et al.  Identifying Opinion Holders for Question Answering in Opinion Texts , 2005 .

[323]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[324]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[325]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[326]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[327]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[328]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[329]  Wei-Ying Ma,et al.  User Intention Modeling in Web Applications Using Data Mining , 2002, World Wide Web.

[330]  P. White Subjectivity, evaluation and point of view in media discourse , 2004 .

[331]  Maite Taboada,et al.  Analyzing Appraisal Automatically , 2004 .

[332]  Marco Perugini,et al.  The distinction between desires and intentions , 2004 .

[333]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[334]  Dan Jurafsky,et al.  Automatic Extraction of Opinion Propositions and their Holders , 2004 .

[335]  A. Utsumi Stylistic and Contextual Effects in Irony Processing , 2004 .

[336]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.

[337]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[338]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[339]  Daniel Marcu,et al.  Sentence Level Discourse Parsing using Syntactic and Lexical Information , 2003, NAACL.

[340]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[341]  P. White Beyond modality and hedging: A dialogic view of the language of intersubjective stance , 2003 .

[342]  K. Scherer,et al.  Handbook of affective sciences. , 2003 .

[343]  Claire Cardie,et al.  Recognizing and Organizing Opinions Expressed in the World Press , 2003, New Directions in Question Answering.

[344]  Michael L. Littman,et al.  Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus , 2002, ArXiv.

[345]  Marc Moens,et al.  Articles Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status , 2002, CL.

[346]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[347]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[348]  D. Noël Pattern grammar: A corpus-driven approach to the lexical grammar of English. By SUSAN HUNSTON and GILL FRANCIS (Studies in corpus linguistics 4.) Amsterdam & Philadelphia: John Benjamins, 2000 , 2002 .

[349]  Edward B. Royzman,et al.  Negativity Bias, Negativity Dominance, and Contagion , 2001 .

[350]  S. Hunston,et al.  Evaluation in Text: Authorial Stance and the Construction of Discourse , 2001 .

[351]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[352]  Michael Wooldridge,et al.  Reasoning about rational agents , 2000, Intelligent robots and autonomous agents.

[353]  S. Attardo Irony as relevant inappropriateness , 2000 .

[354]  R. Gibbs Irony in Talk Among Friends , 2000 .

[355]  Susan Hunston,et al.  Book Reviews: Pattern Grammar: A Corpus-Driven Approach to the Lexical Grammar of English , 2000, CL.

[356]  Jeannett Martin Beyond Exchange : Appraisal Systems in English , 2000 .

[357]  Janyce Wiebe,et al.  Recognizing subjectivity: a case study in manual tagging , 1999, Natural Language Engineering.

[358]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[359]  Karen E. Lochbaum,et al.  A Collaborative Planning Model of Intentional Structure , 1998, CL.

[360]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[361]  Michael Wooldridge,et al.  The Belief-Desire-Intention Model of Agency , 1998, ATAL.

[362]  Albert N. Katz,et al.  The Differential Role of Ridicule in Sarcasm and Irony , 1998 .

[363]  Ellen Spertus,et al.  Smokey: Automatic Recognition of Hostile Messages , 1997, AAAI/IAAI.

[364]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[365]  Rosalind W. Picard Affective Computing , 1997 .

[366]  Dionysis Goutsos,et al.  A model of sequential relations in expository test , 1996 .

[367]  Akira Utsumi,et al.  A Unified Theory of Irony and Its Computational Formalization , 1996, COLING.

[368]  Peter H. Fries,et al.  9. Themes, methods of development, and texts , 1995 .

[369]  Ruqaiya Hasan,et al.  On subject and theme : a discourse functional perspective , 1995 .

[370]  Karen E. Lochbaum,et al.  Using collaborative plans to model the intentional structure of discourse , 1995 .

[371]  Scott Weinstein,et al.  Centering: A Framework for Modeling the Local Coherence of Discourse , 1995, CL.

[372]  Katharina Barbe Irony in context , 1995 .

[373]  W. Chafe Discourse, Consciousness, and Time: The Flow and Displacement of Conscious Experience in Speaking and Writing , 1996 .

[374]  A. Knott,et al.  Using Linguistic Phenomena to Motivate a Set of Coherence Relations. , 1994 .

[375]  Marti A. Hearst Multi-Paragraph Segmentation Expository Text , 1994, ACL.

[376]  Janyce Wiebe,et al.  Tracking Point of View in Narrative , 1994, Comput. Linguistics.

[377]  Johanna D. Moore,et al.  Planning Text for Advisory Dialogues: Capturing Intentional and Rhetorical Information , 1993, CL.

[378]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[379]  Marti A. Hearst Direction-based text interpretation as an information access refinement , 1992 .

[380]  P. Charaudeau,et al.  Grammaire du sens et de l expression , 1992 .

[381]  Alexis Kalokerinos A natural history of negation , 1991 .

[382]  Tomek Strzalkowski,et al.  From Discourse to Logic , 1991 .

[383]  John M. Swales,et al.  Genre Analysis: English in Academic and Research Settings , 1993 .

[384]  Michael E. Bratman Dretske's Desires , 1990 .

[385]  Hector J. Levesque,et al.  Intention is Choice with Commitment , 1990, Artif. Intell..

[386]  D. Biber,et al.  Styles of stance in English: Lexical and grammatical marking of evidentiality and affect , 1989 .

[387]  Alice Myers Roy,et al.  Irony in conversation , 1989 .

[388]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[389]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[390]  Douglas Biber,et al.  Adverbial stance types in English , 1988 .

[391]  Candace L. Sidner,et al.  Attention, Intentions, and the Structure of Discourse , 1986, CL.

[392]  Johanna Nichols,et al.  Evidentiality: The Linguistic Coding of Epistemology , 1986 .

[393]  Bruce Bowe The Face of Emotion , 1985 .

[394]  Michael Halliday,et al.  An Introduction to Functional Grammar , 1985 .

[395]  Richard J. Gerrig,et al.  On the pretense theory of irony. , 1984, Journal of experimental psychology. General.

[396]  P. Ekman Expression and the Nature of Emotion , 1984 .

[397]  J. Russell Pancultural Aspects of the Human Conceptual Organization of Emotions , 1983 .

[398]  Ann Banfield,et al.  Unspeakable Sentences : Narration and Representation in the Language of Fiction , 1982 .

[399]  Willem J. M. Levelt,et al.  The speaker’s linearization problem , 1981 .

[400]  D. Sperber,et al.  Irony and the Use-Mention Distinction , 1981 .

[401]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[402]  David R. Dowty,et al.  Introduction to Montague semantics , 1980 .

[403]  Jerry R. Hobbs Coherence and Coreference , 1979, Cogn. Sci..

[404]  Michael Halliday,et al.  Cohesion in English , 1976 .

[405]  H. H. Clark,et al.  What's new? Acquiring New information as a process in comprehension , 1974 .

[406]  Charles E. Osgood,et al.  FROM YANG AND YIN TO and OR but , 1973 .

[407]  J. M. Kittross The measurement of meaning , 1959 .