Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach

Abstract Solute Cu plays a major role in the embrittlement of reactor pressure vessel (RPV) steels under radiation. In RPV steels and dilute FeCu alloys, characterization techniques such as the tomographic atom probe (TAP), or the small angle neutron scattering (SANS) have revealed the formation of solute rich clusters (with Cu, Ni, Mn and Si) under neutron flux. It is thus very important to characterize the interactions of these solutes with radiation-induced point defects in order to understand the elementary mechanisms behind the formation of these clusters. Ab initio calculations based on the density functional theory have been made in order to build a database used to parameterise an atomic kinetic Monte Carlo model. The interactions of point defects and solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) have been evaluated for different configurations of small solute clusters and solute–vacancy complexes. First results obtained with the kinetic Monte Carlo model will be presented and compared to some experimental observations.

[1]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[2]  C. Domain,et al.  Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .

[3]  B. Wirth,et al.  Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys : a comparison of APT and SANS data , 2003 .

[4]  A. Serra,et al.  The evolution of copper precipitates in binary FeCu alloys during ageing and irradiation , 1995 .

[5]  Peter Binkele,et al.  Atomistic computer simulation of the formation of Cu-precipitates in steels , 2002 .

[6]  B. Wirth,et al.  A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels , 1997 .

[7]  J. Hafner,et al.  Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn , 2003 .

[8]  F. Maury,et al.  Precipitation kinetics of dilute FeCu and FeCuMn alloys subjected to electron irradiation , 1992 .

[9]  Brian D. Wirth,et al.  A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels , 1997 .

[10]  M. Schneider,et al.  X‐Ray Compton Scattering Study of Electronic Distribution in Beryllium , 1980 .

[11]  C. Kittel Introduction to solid state physics , 1954 .

[12]  H. Schaefer,et al.  Vacancy formation in iron investigated by positron annihilation in thermal equilibrium , 1977 .

[13]  S. Dumbill,et al.  Irradiation-induced microstructural changes, and hardening mechanisms, in model PWR reactor pressure vessel steels , 1995 .

[14]  A. Möslang,et al.  Interaction of vacancies with impurities in iron , 1983 .

[15]  Frédéric Soisson,et al.  Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers , 2002 .

[16]  P. Pareige,et al.  Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys , 1994 .

[17]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[18]  A. Serra,et al.  Study of copper precipitates in α-iron by computer simulation II. Interatomic potential for Fe[sbnd]Cu interactions and properties of coherent precipitates , 1996 .

[19]  G. Brauer,et al.  Neutron Embrittlement of Reactor Pressure Vessel Steels: A Challenge to Positron Annihilation and Other Methods† , 1987 .

[20]  Fei Wang,et al.  A model for calculating interaction coefficients between elements in liquid and iron-base alloy , 1997 .

[21]  M. G. Burke,et al.  An atom probe field ion microscopy study of neutron-irradiated pressure vessel steels , 1992 .

[22]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[23]  L. Schepper,et al.  Positron annihilation on pure and carbon-dopedα-iron in thermal equilibrium , 1983 .

[24]  C. Domain,et al.  Ab initio calculations of vacancy interactions with solute atoms in bcc Fe , 2005 .

[25]  Frédéric Soisson,et al.  Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation , 1996 .

[26]  K. Chou,et al.  A self-consistent model for predicting interaction parameters in multicomponent alloys , 1999 .

[27]  J. Kivilahti,et al.  Thermodynamic and kinetic study of diffusion paths in the system Cu-Fe-Ni , 1996 .

[28]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[29]  H. Ohta,et al.  Thermodynamics of Aluminum and Manganese Deoxidation Equilibria in Fe-Ni and Fe-Cr Alloys , 2003 .

[30]  G. Martin,et al.  Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics , 2000 .

[31]  G. D. Smith,et al.  Combined atomic–scale modelling and experimental studies of nucleation in the solid state , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Hongjie Li,et al.  Evaluation of unified interaction parameter model parameters for calculating activities of ferromanganese alloys: Mn-Fe-C, Mn-Fe-Si, Mn-C-Si, and Mn-Fe-C-Si systems , 1997 .