Low dimensional vs point-wise complex object detection, refinement and tracking

In this dissertation, I focus on algorithms to detect, refine, and track complex visual objects, as determined by their shape, appearance, or range of motion. Two different classes of representations, namely low-dimensional and point-wise (nonparametric), are explored, compared, and analyzed by combining multiple features from both imaging and depth sensors. Such perception modules may provide crucial decision-making and planning information for intelligent systems, and we show links to several robotic application areas. On one side, a multimodal human detection algorithm which utilizes multiple sensor data sources is detailed. The human is represented in a low-dimensional space, and a ladar-camera architecture is constructed which with visual and geometric cues improves on the detection rate and speed of conventional human classifiers. Unlike existing approaches, the proposed human classifier does not make any restrictive assumptions on the range scan positions, and thus is applicable to a wide range of real-life detection tasks. On another side, a modified graph cut-based method is proposed to refine complex objects–e.g. human hands, hiking trails for navigation, and household objects– from a rough estimate of the object pose given by a low-dimensional shape detector or tracker. The standard graph cut method is modified to incorporate color and shape distance terms, adaptively weighting them at run time to favor the most informative cue in different visual conditions. Also, this method is extended for point-wise tracking of the objects through iterative refinement without estimation of the object displacement over time. Moreover, a novel algorithm which combines lowand high-level observations in a graph cut framework is developed for the purpose of refining low-dimensional

[1]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[2]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[3]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Yan Lu,et al.  Integrating stereo structure for omnidirectional trail following , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Nathan Silberman,et al.  Indoor scene segmentation using a structured light sensor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[6]  Jovan Popovic,et al.  Real-time hand-tracking with a color glove , 2009, SIGGRAPH '09.

[7]  Alexander M. Nelson,et al.  Object tracking via graph cuts , 2009, Optical Engineering + Applications.

[8]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[9]  Montse Pardàs,et al.  Robust Tracking and Object Classification Towards Automated Video Surveillance , 2004, ICIAR.

[10]  Yogesh Rathi,et al.  Tracking Through Clutter Using Graph Cuts , 2007, BMVC.

[11]  Olga Veksler,et al.  Star Shape Prior for Graph-Cut Image Segmentation , 2008, ECCV.

[12]  Hideo Saito,et al.  Live video object tracking and segmentation using graph cuts , 2008, 2008 15th IEEE International Conference on Image Processing.

[13]  Takeo Kanade,et al.  Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing , 2007, ACCV.

[14]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[15]  Ana-Maria Cretu,et al.  Deformable Object Segmentation and Contour Tracking in Image Sequences Using Unsupervised Networks , 2010, 2010 Canadian Conference on Computer and Robot Vision.

[16]  Luc Van Gool,et al.  Probabilistic object tracking using multiple features , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[17]  Sergio Escalera,et al.  Spatio-Temporal GrabCut human segmentation for face and pose recovery , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[18]  Robert Pless,et al.  Interactive Separation of Segmented Bones in CT Volumes Using Graph Cut , 2008, MICCAI.

[19]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[20]  Cristiano Premebida,et al.  LIDAR and vision‐based pedestrian detection system , 2009, J. Field Robotics.

[21]  Jitendra Malik,et al.  A real-time approach to stereopsis and lane-finding , 1996, Proceedings of Conference on Intelligent Vehicles.

[22]  Xianzhong Dai,et al.  Reliable people tracking approach for mobile robot in indoor environments , 2010 .

[23]  B. S. Manjunath,et al.  Interactive graph cut segmentation of touching neuronal structures from electron micrographs , 2010, 2010 IEEE International Conference on Image Processing.

[24]  Bo Peng,et al.  Parameter Selection for Graph Cut Based Image Segmentation , 2008, BMVC.

[25]  P. Kohli,et al.  Efficiently solving dynamic Markov random fields using graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  Vibhav Vineet,et al.  Human Instance Segmentation from Video using Detector-based Conditional Random Fields , 2011, BMVC.

[27]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Sergio Escalera,et al.  GrabCut-Based Human Segmentation in Video Sequences , 2012, Sensors.

[29]  Luís A. Alexandre 3D Descriptors for Object and Category Recognition: a Comparative Evaluation , 2012 .

[30]  Sebastian Thrun,et al.  Self-supervised Monocular Road Detection in Desert Terrain , 2006, Robotics: Science and Systems.

[31]  Roland Siegwart,et al.  Human detection using multimodal and multidimensional features , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  D. Jayadevappa,et al.  Medical Image Segmentation Algorithms using Deformable Models: A Review , 2011 .

[33]  Ezzeddine Zagrouba,et al.  People Tracking Based on Predictions and Graph-Cuts Segmentation , 2013, ISVC.

[34]  Olga Veksler,et al.  A New Algorithm for Energy Minimization with Discontinuities , 1999, EMMCVPR.

[35]  Leo Grady,et al.  A multilevel banded graph cuts method for fast image segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  Takayoshi Yamashita,et al.  Human Pose Estimation Using Exemplars and Part Based Refinement , 2010, ACCV.

[38]  Tetsuya Takiguchi,et al.  Object recognition and segmentation using SIFT and Graph Cuts , 2008, 2008 19th International Conference on Pattern Recognition.

[39]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Hironobu Fujiyoshi,et al.  Real-Time Human Detection Using Relational Depth Similarity Features , 2010, ACCV.

[41]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[42]  Anton Osokin,et al.  Fast Approximate Energy Minimization with Label Costs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Jue Wang Discriminative Gaussian Mixtures for Interactive Image Segmentation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[44]  Scott Cohen,et al.  Geodesic graph cut for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Edwin Olson,et al.  Multi-Sensor Lane Finding in Urban Road Networks , 2008, Robotics: Science and Systems.

[46]  Camillo J. Taylor,et al.  Stochastic Road Shape Estimation , 2001, ICCV.

[47]  Yan Lu,et al.  Deformable Object Shape Refinement and Tracking Using Graph Cuts and Support Vector Machines , 2011, ISVC.

[48]  David A. Forsyth,et al.  Tracking People by Learning Their Appearance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Chi Fang,et al.  Pose robust face tracking by combining view-based AAMs and temporal filters , 2012, Comput. Vis. Image Underst..

[50]  Yan Lu,et al.  Trail following with omnidirectional vision , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[52]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[53]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[54]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[55]  Luís A. Alexandre,et al.  A comparative evaluation of 3D keypoint detectors in a RGB-D Object Dataset , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[56]  Sebastian Thrun,et al.  Real-time identification and localization of body parts from depth images , 2010, 2010 IEEE International Conference on Robotics and Automation.

[57]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[58]  Fatih Porikli,et al.  Unconstrained 1D range and 2D image based human detection , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[61]  Marie-Pierre Jolly,et al.  Demonstration of segmentation with interactive graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[62]  A. Enis Çetin,et al.  Computer vision based method for real-time fire and flame detection , 2006, Pattern Recognit. Lett..

[63]  Thierry Chateau,et al.  Pedestrian Detection and Tracking in an Urban Environment Using a Multilayer Laser Scanner , 2010, IEEE Transactions on Intelligent Transportation Systems.

[64]  David Lee,et al.  One-Dimensional Regularization with Discontinuities , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[66]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Robert H. Luke,et al.  Human Segmentation from Video in Indoor Environments Using Fused Color and Texture Features , 2010 .

[68]  David A. Forsyth,et al.  Probabilistic Methods for Finding People , 2001, International Journal of Computer Vision.

[69]  Ben J. A. Kröse,et al.  Part based people detection using 2D range data and images , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Ramakant Nevatia,et al.  Bayesian human segmentation in crowded situations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[71]  W. Eric L. Grimson,et al.  Discontinuity detection for visual surface reconstruction , 1985, Comput. Vis. Graph. Image Process..

[72]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[73]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[74]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[75]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[77]  B. A. Shepherd,et al.  An Appraisal of a Decision Tree Approach to Image Classification , 1983, IJCAI.

[78]  Marie-Pierre Jolly,et al.  Interactive Organ Segmentation Using Graph Cuts , 2000, MICCAI.

[79]  Yan Lu,et al.  A Trail-Following Robot Which Uses Appearance and Structural Cues , 2012, FSR.

[80]  Cristiano Premebida,et al.  Exploiting LIDAR-based features on pedestrian detection in urban scenarios , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[81]  James W. Davis,et al.  Integrating Appearance and Motion Cues for Simultaneous Detection and Segmentation of Pedestrians , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[82]  Ning Xu,et al.  Object segmentation using graph cuts based active contours , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[83]  Christopher Rasmussen,et al.  Automatic Refinement of Foreground Regions for Robot Trail Following , 2010, 2010 20th International Conference on Pattern Recognition.

[84]  Vladimir Kolmogorov,et al.  Visual correspondence using energy minimization and mutual information , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[85]  Yuri Boykov,et al.  Globally optimal segmentation of multi-region objects , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[86]  Luc Van Gool,et al.  Pedestrian detection at 100 frames per second , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[87]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[88]  Christoph Mertz,et al.  LADAR-based Pedestrian Detection and Tracking , 2008 .

[89]  Gérard G. Medioni,et al.  Real time tracking using an active pan-tilt-zoom network camera , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[90]  Mohan S. Kankanhalli,et al.  Compressed domain object tracking for automatic indexing of objects in MPEG home video , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[91]  Andrew Zisserman,et al.  Humanising GrabCut: Learning to segment humans using the Kinect , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[92]  Mubarak Shah,et al.  KNIGHT/spl trade/: a real time surveillance system for multiple and non-overlapping cameras , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[93]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[94]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[95]  Dieter Fox,et al.  Detection-based object labeling in 3D scenes , 2012, 2012 IEEE International Conference on Robotics and Automation.

[96]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[97]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[98]  Nicholas M. Patrikalakis,et al.  A random finite set based detection and tracking using 3D LIDAR in dynamic environments , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[99]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[101]  Yogesh Rathi,et al.  Graph Cut Segmentation with Nonlinear Shape Priors , 2007, 2007 IEEE International Conference on Image Processing.

[102]  Donald Scott,et al.  Shape-guided superpixel grouping for trail detection and tracking , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[103]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[104]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[105]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[106]  Sebastian Thrun,et al.  Autonomous Helicopter Tracking and Localization Using a Self-surveying Camera Array , 2007, Int. J. Robotics Res..

[107]  R. Nevatia,et al.  Simultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[108]  Andrew Y. Ng,et al.  Integrating Visual and Range Data for Robotic Object Detection , 2008, ECCV 2008.

[109]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[110]  P. J. Narayanan,et al.  CUDA cuts: Fast graph cuts on the GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[111]  Yasuo Ariki,et al.  Learning an Efficient and Robust Graph Matching Procedure for Specific Object Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[112]  Martin Jägersand,et al.  An interactive graph cut method for brain tumor segmentation , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[113]  Paria Mehrani,et al.  Saliency Segmentation based on Learning and Graph Cut Refinement , 2010, BMVC.

[114]  Sang Uk Lee,et al.  Stereo Matching Using Iterated Graph Cuts and Mean Shift Filtering , 2006, ACCV.

[115]  Yan Lu,et al.  Appearance contrast for fast, robust trail-following , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[116]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[117]  Sema Candemir,et al.  Adaptive Regularization Parameter for Graph Cut Segmentation , 2010, ICIAR.

[118]  Dimitris N. Metaxas,et al.  Deformable-Model Based Textured Object Segmentation , 2005, EMMCVPR.

[119]  Michael Isard,et al.  The CONDENSATION Algorithm - Conditional Density Propagation and Applications to Visual Tracking , 1996, NIPS.

[120]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[121]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[123]  Edwin Olson,et al.  Graph-based segmentation for colored 3D laser point clouds , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[124]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[125]  Cordelia Schmid,et al.  Learning to Parse Pictures of People , 2002, ECCV.

[126]  Zhang Tao,et al.  Vehicle State Estimation System Aided by Inertial Sensors in GPS Navigation , 2010, 2010 International Conference on Electrical and Control Engineering.

[127]  James S. Duncan,et al.  3D image segmentation of deformable objects with joint shape-intensity prior models using level sets , 2004, Medical Image Anal..

[128]  Andrew Zisserman,et al.  Incremental learning of object detectors using a visual shape alphabet , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[129]  Wolfram Burgard,et al.  Using Boosted Features for the Detection of People in 2D Range Data , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[130]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[131]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[132]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[133]  Roland Siegwart,et al.  A Layered Approach to People Detection in 3D Range Data , 2010, AAAI.

[134]  Edward J. Delp,et al.  A fast algorithm for video parsing using MPEG compressed sequences , 1995, Proceedings., International Conference on Image Processing.

[135]  Abdul Rahman Ramli,et al.  Review of brain MRI image segmentation methods , 2010, Artificial Intelligence Review.

[136]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[137]  Leila Takayama,et al.  Exploring the role of robots in home organization , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[138]  Roberto Cipolla,et al.  Multi-view stereo via volumetric graph-cuts , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[139]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Aurélie Bugeau,et al.  Tracking with Occlusions via Graph Cuts , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[141]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[142]  Matt C. Best,et al.  An Extended Adaptive Kalman Filter for Real-time State Estimation of Vehicle Handling Dynamics , 2000 .

[143]  Giorgio Metta,et al.  Active object recognition on a humanoid robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[144]  C. Diehl,et al.  Scheduling an active camera to observe people , 2004, VSSN '04.

[145]  Antonis A. Argyros,et al.  Efficient model-based 3D tracking of hand articulations using Kinect , 2011, BMVC.

[146]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[147]  Vasileios Megalooikonomou,et al.  Segmentation of anatomical branching structures based on texture features and graph cut , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[148]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008, J. Field Robotics.

[149]  Viet Anh Nguyen,et al.  Efficient block-matching motion estimation based on Integral frame attributes , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[150]  Pushmeet Kohli,et al.  Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts , 2008, International Journal of Computer Vision.

[151]  G. Medioni,et al.  Two-Frames Accurate Motion Segmentation Using Tensor Voting and Graph-Cuts , 2008, 2008 IEEE Workshop on Motion and video Computing.

[152]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[153]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[154]  Andrew Blake,et al.  Efficient Human Pose Estimation from Single Depth Images , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[155]  Suya You,et al.  Real-Time Object Tracking for Augmented Reality Combining Graph Cuts and Optical Flow , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[156]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[157]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[158]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[159]  Jean-Marc Chassery,et al.  Iterative Human Segmentation from Detection Windows using Contour Segment Analysis , 2013, VISAPP.

[160]  Olga Veksler Graph Cut Based Optimization for MRFs with Truncated Convex Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[161]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[162]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[163]  Martin Styner,et al.  Segmentation of Single-Figure Objects by Deformable M-reps , 2001, MICCAI.

[164]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[165]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[166]  B. S. Manjunath,et al.  Shape prior segmentation of multiple objects with graph cuts , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[167]  Takeo Kanade,et al.  Video Segmentation Using Iterated Graph Cuts Based on Spatio-temporal Volumes , 2009, ACCV.

[168]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[169]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[170]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[171]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[172]  Harry Shum,et al.  Interactive Offline Tracking for Color Objects , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[173]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[174]  Jian Zhao,et al.  Human segmentation by geometrically fusing visible-light and thermal imageries , 2012, Multimedia Tools and Applications.

[175]  Yang Wang,et al.  Non-rigid face tracking with enforced convexity and local appearance consistency constraint , 2010, Image Vis. Comput..

[176]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[177]  Daijin Kim,et al.  Pose Robust Human Detection in Depth Image Using Four Directional 2D Elliptical Filters , 2009, 2009 11th IEEE International Symposium on Multimedia.

[178]  Yogesh Rathi,et al.  Multi-Object Tracking Through Clutter Using Graph Cuts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[179]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[180]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[181]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[182]  Tao Zhang,et al.  Interactive graph cut based segmentation with shape priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[183]  Stan Sclaroff,et al.  Deformable shape detection and description via model-based region grouping , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[184]  Sergio Escalera,et al.  Graph cuts optimization for multi-limb human segmentation in depth maps , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[185]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[186]  Branko Ristic,et al.  A particle filter for joint detection and tracking of color objects , 2007, Image Vis. Comput..

[187]  Gunnar Farnebäck,et al.  Two-Frame Motion Estimation Based on Polynomial Expansion , 2003, SCIA.

[188]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[189]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[190]  Jian Yang,et al.  Iterated Graph Cuts for Image Segmentation , 2009, ACCV.

[191]  Nicolas Pérez de la Blanca,et al.  Using Optical Flow for Tracking , 2003, CIARP.

[192]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[193]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[194]  Patrick Pérez,et al.  Track and Cut: Simultaneous Tracking and Segmentation of Multiple Objects with Graph Cuts , 2008, EURASIP J. Image Video Process..

[195]  Mubarak Shah,et al.  Tracking and Object Classification for Automated Surveillance , 2002, ECCV.

[196]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[197]  Jorge Stolfi,et al.  IFTrace: Video segmentation of deformable objects using the Image Foresting Transform , 2012, Comput. Vis. Image Underst..