Meta-heuristic cross-layer protocol for UWB emergency responder sensor network

In this paper, an ultra-wideband based sensor network for an emergency responder system is analyzed. Due to multiple objectives such as adaptive data rate, power control and quality-of-service the message transmission can be framed as a non-deterministic polynomial computation time hard problem. Thus a meta-heuristic algorithm is applied to obtain a reliable and optimal solution. The designed cross layer protocol incorporates the signalpsilas physical properties. thus balancing the throughput while reducing latency, sensor resources thus longevity of network is attained.

[1]  Gurdip Singh,et al.  Ant Colony Algorithms for Steiner Trees: An Application to Routing in Sensor Networks , 2005 .

[2]  Falko Dressler,et al.  On the lifetime of wireless sensor networks , 2009, TOSN.

[3]  J. Boudec,et al.  Optimal power control, scheduling, and routing in UWB networks , 2004, IEEE Journal on Selected Areas in Communications.

[4]  Nathaniel J. August,et al.  Medium Access Control in Impulse-Based Ultra Wideband Ad Hoc and Sensor Networks , 2005 .

[5]  Lisa Ann Osadciw,et al.  Security: Cross Layer Protocol in Wireless Sensor Network , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[6]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[7]  Hanif D. Sherali,et al.  Cross-layer optimization for routing data traffic in UWB-based sensor networks , 2005, MobiCom '05.

[8]  Lisa Ann Osadciw,et al.  Detecting Sybil attacks in image senor network using cognitive intelligence , 2007, SANET '07.

[9]  Fernando Boavida,et al.  An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks , 2006, ANTS Workshop.

[10]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[11]  Rohit Negi,et al.  Capacity of power constrained ad-hoc networks , 2004, IEEE INFOCOM 2004.

[12]  Lisa Ann Osadciw,et al.  Balancing the performance of a sensor network using an ant system , 2003 .

[13]  S. D'Amico,et al.  A up-to-1GHz low-power baseband chain for UWB receivers , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[14]  Andrea Baiocchi,et al.  Radio resource sharing for ad hoc networking with UWB , 2002, IEEE J. Sel. Areas Commun..

[15]  Ying Zhang,et al.  Improvements on Ant Routing for Sensor Networks , 2004, ANTS Workshop.

[16]  Pierre Baldi,et al.  Modeling and optimization of UWB communication networks through a flexible cost function , 2002, IEEE J. Sel. Areas Commun..

[17]  M. Terre,et al.  Major characteristics of UWB indoor transmission for simulation , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[18]  Kenneth J. Hintz,et al.  Goal lattices for sensor management , 1999, Defense, Security, and Sensing.

[19]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[20]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[21]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[22]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[23]  Dong Sam Ha,et al.  A systematic approach to CMOS low noise amplifier design for ultrawideband applications , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[24]  Lisa Ann Osadciw,et al.  Robustness of predictive sensor network routing in fading channels , 2005, SPIE Defense + Commercial Sensing.