Fusing Social Media and Traditional Traffic Data for Advanced Traveler Information and Travel Behavior Analysis

.......................................................................................................................

[1]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[2]  Arun Kejariwal,et al.  A Novel Technique for Long-Term Anomaly Detection in the Cloud , 2014, HotCloud.

[3]  David Beymer,et al.  A real-time computer vision system for vehicle tracking and traffic surveillance , 1998 .

[4]  Harry Timmermans,et al.  Semiautomatic Imputation of Activity Travel Diaries , 2010 .

[5]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.

[6]  Qing He,et al.  Traffic signal control with partial grade separation for oversaturated conditions , 2016 .

[7]  Jilles Vreeken,et al.  Krimp: mining itemsets that compress , 2011, Data Mining and Knowledge Discovery.

[8]  Dirk Helbing,et al.  Empirical Features of Congested Traffic States and Their Implications for Traffic Modeling , 2007, Transp. Sci..

[9]  Krzysztof Janowicz,et al.  Can Twitter data be used to validate travel demand models , 2015 .

[10]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[11]  Ciro Cattuto,et al.  Predicting human mobility through the assimilation of social media traces into mobility models , 2016, EPJ Data Science.

[12]  Hani S. Mahmassani,et al.  Day-to-day evolution of network flows under real-time information and reactive signal control , 1997 .

[13]  M. B. I. Reaz,et al.  Accident detection and reporting system using GPS, GPRS and GSM technology , 2012, 2012 International Conference on Informatics, Electronics & Vision (ICIEV).

[14]  Freddy Lécué,et al.  Westland row why so slow?: fusing social media and linked data sources for understanding real-time traffic conditions , 2013, IUI '13.

[15]  Kerner,et al.  Experimental properties of complexity in traffic flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Shinichi Nagano,et al.  Feasibility Study on Detection of Transportation Information Exploiting Twitter as a Sensor , 2012, Proceedings of the International AAAI Conference on Web and Social Media.

[17]  Ricardo Buettner,et al.  Getting a Job via Career-Oriented Social Networking Sites: The Weakness of Ties , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[18]  Judith Gelernter,et al.  An algorithm for local geoparsing of microtext , 2013, GeoInformatica.

[19]  Geert Wets,et al.  Changes in Travel Behavior in Response to Weather Conditions , 2010 .

[20]  Li Wei,et al.  Compression-based data mining of sequential data , 2007, Data Mining and Knowledge Discovery.

[21]  Michael J. Cassidy,et al.  AN OBSERVED TRAFFIC PATTERN IN LONG FREEWAY QUEUES , 2001 .

[22]  Stephen G. Ritchie,et al.  STATISTICAL AND NEURAL CLASSIFIERS TO DETECT TRAFFIC OPERATIONAL PROBLEMS ON URBAN ARTERIALS , 1998 .

[23]  Changxu Wu,et al.  Modeling Traffic Control Agency Decision Behavior for Multimodal Manual Signal Control Under Event Occurrences , 2015, IEEE Transactions on Intelligent Transportation Systems.

[24]  Rob Hranac,et al.  Twitter Interactions as a Data Source for Transportation Incidents , 2013 .

[25]  Liuqing Yang,et al.  Big Data for Social Transportation , 2016, IEEE Transactions on Intelligent Transportation Systems.

[26]  S. Merler,et al.  The role of population heterogeneity and human mobility in the spread of pandemic influenza , 2010, Proceedings of the Royal Society B: Biological Sciences.

[27]  Satish V. Ukkusuri,et al.  Use of Social Media Data to Explore Crisis Informatics , 2014 .

[28]  Fang Yuan,et al.  INCIDENT DETECTION USING SUPPORT VECTOR MACHINES , 2003 .

[29]  Dirk Grunwald,et al.  Fusing Text and Frienships for Location Inference in Online Social Networks , 2012, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[30]  Kun Zhang,et al.  Effective arterial road incident detection: A Bayesian network based algorithm , 2006 .

[31]  Reid Ewing,et al.  Travel and the Built Environment: A Synthesis , 2001 .

[32]  D. White,et al.  An Interpretive Study of Yosemite National Park Visitors’ Perspectives Toward Alternative Transportation in Yosemite Valley , 2007, Environmental management.

[33]  F. Jacob,et al.  Measuring the Degree of Corporate Social Media Use , 2015 .

[34]  A. Kaplan,et al.  Users of the world, unite! The challenges and opportunities of Social Media , 2010 .

[35]  Feng Chen,et al.  From Twitter to detector: real-time traffic incident detection using social media data , 2016 .

[36]  U. Gretzel,et al.  Role of social media in online travel information search , 2010 .

[37]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[38]  Jonathan A. Obar,et al.  Social Media Definition and the Governance Challenge: An Introduction to the Special Issue , 2015 .

[39]  Douglas C. Schmidt,et al.  WreckWatch: Automatic Traffic Accident Detection and Notification with Smartphones , 2011, Mob. Networks Appl..

[40]  Thomas Liebig,et al.  Analytical workflow of monitoring human mobility in big event settings using Bluetooth , 2011, ISA '11.

[41]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[42]  T. Murata,et al.  Breaking News Detection and Tracking in Twitter , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[43]  Tarek F. Abdelzaher,et al.  ClariSense: Clarifying sensor anomalies using social network feeds , 2014, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS).

[44]  Patrice Bellot,et al.  Accurate and effective latent concept modeling for ad hoc information retrieval , 2014, Document Numérique.

[45]  Haiyan Wang,et al.  Urban Road Traffic Condition Pattern Recognition Based on Support Vector Machine , 2013 .

[46]  Jilles Vreeken,et al.  Finding Good Itemsets by Packing Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[47]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[48]  Anna Nagurney,et al.  ON THE EQUIVALENCE BETWEEN STATIONARY LINK FLOW PATTERNS AND TRAFFIC NETWORK EQUILIBRIA , 2001 .

[49]  Jilles Vreeken,et al.  The Odd One Out: Identifying and Characterising Anomalies , 2011, SDM.

[50]  Chaogui Kang,et al.  Intra-urban human mobility patterns: An urban morphology perspective , 2012 .

[51]  Kees Maat,et al.  Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands , 2009 .

[52]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[53]  Zhen Qian,et al.  Road Traffic Congestion Monitoring in Social Media with Hinge-Loss Markov Random Fields , 2014, 2014 IEEE International Conference on Data Mining.

[54]  Hang Li,et al.  Named entity mining from click-through data using weakly supervised latent dirichlet allocation , 2009, KDD.

[55]  Nirajan Shiwakoti,et al.  International Study of Current and Potential Social Media Applications in Unplanned Passenger Rail Disruptions , 2014 .

[56]  Martin Treiber,et al.  Validation of traffic flow models with respect to the spatiotemporal evolution of congested traffic patterns , 2012 .

[57]  David A. Freedman,et al.  Statistical Models: Theory and Practice: References , 2005 .

[58]  Michiaki Tatsubori,et al.  Location inference using microblog messages , 2012, WWW.

[59]  Lawrence W. Lan,et al.  Investigation of temporal freeway traffic patterns in reconstructed state spaces , 2008 .

[60]  Mizuki Morita,et al.  Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter , 2011, EMNLP.

[61]  Charles Amoateng Asamoah Dynamic flashing yellow for emergency evacuation signal timing plan in a corridor , 2014 .

[62]  Haofen Wang,et al.  Towards Effective Event Detection, Tracking and Summarization on Microblog Data , 2011, WAIM.

[63]  B. Rosner Percentage Points for a Generalized ESD Many-Outlier Procedure , 1983 .

[64]  Kenji Yamanishi,et al.  Network anomaly detection based on Eigen equation compression , 2009, KDD.

[65]  Rui Li,et al.  TEDAS: A Twitter-based Event Detection and Analysis System , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[66]  Marta C. González,et al.  Origin-destination trips by purpose and time of day inferred from mobile phone data , 2015 .

[67]  P. L. Mokhtartan,et al.  How derived is the demand for travel? Some conceptual and measurement considerations , 2004 .

[68]  Patricia L. Mokhtarian,et al.  When is getting there half the fun? Modeling the liking for travel - eScholarship , 2005 .

[69]  Ramona Marguta,et al.  Impact of human mobility on the periodicities and mechanisms underlying measles dynamics , 2015, Journal of The Royal Society Interface.

[70]  Qing He,et al.  Performance measure for reliable travel time of emergency vehicles , 2016 .

[71]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[72]  Baher Abdulhai,et al.  Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network , 1999 .

[73]  Randall Guensler,et al.  Elimination of the Travel Diary: Experiment to Derive Trip Purpose from Global Positioning System Travel Data , 2001 .

[74]  Hua Wang,et al.  Enhancing Traffic Incident Detection by Using Spatial Point Pattern Analysis on Social Media , 2015 .

[75]  Zhenhua Zhang,et al.  Exploratory Study on Correlation Between Twitter Concentration and Traffic Surges , 2016 .

[76]  Stefan M. Rüger,et al.  Weakly Supervised Joint Sentiment-Topic Detection from Text , 2012, IEEE Transactions on Knowledge and Data Engineering.

[77]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[78]  Kyunghan Lee,et al.  On the Levy-Walk Nature of Human Mobility , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[79]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[80]  Joseph L. Schofer,et al.  Role of Social Media in Communicating Transit Disruptions , 2014 .

[81]  Shih-Miao Chin,et al.  Temporary Losses of Highway Capacity and Impacts on Performance , 2002 .

[82]  Nikolaos Geroliminis,et al.  Experimental Investigation of Urban‐Scale Macroscopic Fundamental Diagrams , 2008 .

[83]  Samuel C Tignor,et al.  FREEWAY INCIDENT-DETECTION ALGORITHMS BASED ON DECISION TREES WITH STATES , 1978 .

[84]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[85]  Michael Schatz,et al.  Learning Program Behavior Profiles for Intrusion Detection , 1999, Workshop on Intrusion Detection and Network Monitoring.

[86]  Katsuhiro Nishinari,et al.  Traffic Flow Dynamics: Data, Models and Simulation , 2014 .

[87]  Zhong Liu,et al.  Modeling Social Influence on Activity-Travel Behaviors Using Artificial Transportation Systems , 2015, IEEE Transactions on Intelligent Transportation Systems.

[88]  M. Narasimha Murty,et al.  On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations , 2010, PAKDD.

[89]  Kwang-Ho Ro,et al.  Outlier detection for high-dimensional data , 2015 .

[90]  K. Powell,et al.  The Effectiveness of Urban Design and Land Use and Transport Policies and Practices to Increase Physical Activity: A Systematic Review. , 2006, Journal of physical activity & health.

[91]  M. Cassidy,et al.  Some traffic features at freeway bottlenecks , 1999 .

[92]  Huiji Gao,et al.  Harnessing the Crowdsourcing Power of Social Media for Disaster Relief , 2011, IEEE Intelligent Systems.

[93]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[94]  Stephanie Camay,et al.  Role of Social Media in Environmental Review Process of National Environmental Policy Act , 2012 .

[95]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[96]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[97]  Tsvi Kuflik,et al.  The potential of social media in delivering transport policy goals , 2014 .

[98]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD 2000.

[99]  Berk Anbaroglu,et al.  Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks , 2013 .

[100]  Eleonora D'Andrea,et al.  Real-Time Detection of Traffic From Twitter Stream Analysis , 2015, IEEE Transactions on Intelligent Transportation Systems.

[101]  E R Case,et al.  DEVELOPMENT OF FREEWAY INCIDENT-DETECTION ALGORITHMS BY USING PATTERN-RECOGNITION TECHNIQUES , 1979 .

[102]  Carlo Ratti,et al.  Geo-located Twitter as proxy for global mobility patterns , 2013, Cartography and geographic information science.

[103]  Hojjat Adeli,et al.  Feature Extraction for Traffic Incident Detection Using Wavelet Transform and Linear Discriminant Analysis , 2000 .

[104]  Axel Schulz,et al.  I See a Car Crash: Real-Time Detection of Small Scale Incidents in Microblogs , 2013, ESWC.

[105]  Li Li,et al.  Robust PCA-based abnormal traffic flow pattern isolation and loop detector fault detection , 2008 .

[106]  Jun Ding,et al.  PAMSCOD: Platoon-based arterial multi-modal signal control with online data , 2011 .

[107]  Semyon Tsynkov,et al.  A Theoretical Introduction to Numerical Analysis , 2006 .

[108]  Adel W. Sadek,et al.  Modeling the Impacts of Inclement Weather on Freeway Traffic Speed , 2015 .

[109]  Satish V. Ukkusuri,et al.  Urban activity pattern classification using topic models from online geo-location data , 2014 .

[110]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[111]  David A. Hensher,et al.  Valuing Travel Time Variability within a Rank-Dependent Utility Framework and an Investigation of Unobserved Taste Heterogeneity , 2012 .

[112]  Carsten Binnig,et al.  Dictionary-based order-preserving string compression for main memory column stores , 2009, SIGMOD Conference.

[113]  Carla E. Brodley,et al.  Temporal sequence learning and data reduction for anomaly detection , 1998, CCS '98.

[114]  Ivan G. Guardiola,et al.  A functional approach to monitor and recognize patterns of daily traffic profiles , 2014 .

[115]  D. Hearn,et al.  The Minimum Covering Sphere Problem , 1972 .

[116]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[117]  Sergei Petrovskii,et al.  Dispersal in a Statistically Structured Population: Fat Tails Revisited , 2008, The American Naturalist.

[118]  Amit P. Sheth,et al.  An Information Filtering and Management Model for Twitter Traffic to Assist Crises Response Coordination , 2013 .

[119]  Yi Qi,et al.  Application of wavelet technique to freeway incident detection , 2003 .

[120]  T. Lane,et al.  Sequence Matching and Learning in Anomaly Detection for Computer Security , 1997 .

[121]  Yi Zhang,et al.  Trend Modeling for Traffic Time Series Analysis: An Integrated Study , 2015, IEEE Transactions on Intelligent Transportation Systems.

[122]  M. Sweet,et al.  Traffic Congestion’s Economic Impacts: Evidence from US Metropolitan Regions , 2014 .

[123]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[124]  Christos Faloutsos,et al.  Fast and reliable anomaly detection in categorical data , 2012, CIKM.

[125]  Michael D Fontaine,et al.  EVALUATION OF THE LATE MERGE WORK ZONE TRAFFIC CONTROL STRATEGY , 2004 .

[126]  Shanjiang Zhu,et al.  Exploring Travel Behavior with Social Media: An Empirical Study of Abnormal Movements Using High-Resolution Tweet Trajectory Data , 2017 .

[127]  Qingquan Li,et al.  Identifying Urban Traffic Congestion Pattern from Historical Floating Car Data , 2013 .

[128]  R. Cervero Rail Transit and Joint Development: Land Market Impacts in Washington, D.C. and Atlanta , 1994 .

[129]  Peter Grünwald,et al.  A tutorial introduction to the minimum description length principle , 2004, ArXiv.

[130]  J H Kell,et al.  TRAFFIC DETECTOR HANDBOOK. SECOND EDITION , 1990 .

[131]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[132]  Susan L Handy,et al.  Correlation or causality between the built environment and travel behavior? Evidence from Northern California , 2005 .

[133]  Hanan Samet,et al.  TwitterStand: news in tweets , 2009, GIS.

[134]  Philip S. Yu,et al.  Transportation mode detection using mobile phones and GIS information , 2011, GIS.

[135]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[136]  Dipankar Dasgupta,et al.  Novelty detection in time series data using ideas from immunology , 1996 .

[137]  Sharad Mehrotra,et al.  Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces , 2000, VLDB.

[138]  Kaan Ozbay,et al.  INCIDENT MANAGEMENT IN INTELLIGENT TRANSPORTATION SYSTEMS , 1999 .

[139]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[140]  Bruno S. Silvestre,et al.  Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media , 2011 .

[141]  I. Motivation,et al.  Dynamic Model-Based Techniques for the Detection of Incidents on Freeways , 1980 .

[142]  J. Sallis,et al.  Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures , 2003, Annals of behavioral medicine : a publication of the Society of Behavioral Medicine.

[143]  L. Wynter,et al.  Incident Duration Prediction with Hybrid Tree-based Quantile Regression , 2013 .

[144]  Philip S. Yu,et al.  Outlier detection for high dimensional data , 2001, SIGMOD '01.

[145]  Bin Ran,et al.  Automatic Freeway Incident Detection Based on Fundamental Diagrams of Traffic Flow , 2009 .

[146]  Wasan Pattara-Atikom,et al.  Social-based traffic information extraction and classification , 2011, 2011 11th International Conference on ITS Telecommunications.

[147]  Michael L. Anderson Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion , 2013 .

[148]  Charu C. Aggarwal,et al.  Re-designing distance functions and distance-based applications for high dimensional data , 2001, SGMD.

[149]  Yan Huang,et al.  A Decision Tree Classification Model to Automate Trip Purpose Derivation , 2005 .

[150]  Clayton Lee Stambaugh Social Media and Primary Commercial Service Airports , 2013 .

[151]  Adel W. Sadek,et al.  Short-Term Forecasting of Traffic Volume , 2013 .

[152]  Hong Kam Lo,et al.  Day-to-day departure time modeling under social network influence , 2016 .

[153]  Andreas Schwarz,et al.  How publics use social media to respond to blame games in crisis communication: The Love Parade tragedy in Duisburg 2010 , 2012 .

[154]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[155]  Zhongwei Deng,et al.  Deriving Rules for Trip Purpose Identification from GPS Travel Survey Data and Land Use Data: A Machine Learning Approach , 2010 .

[156]  Tao Wang,et al.  Crowdsourcing in ITS: The State of the Work and the Networking , 2016, IEEE Transactions on Intelligent Transportation Systems.

[157]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[158]  Kurt Hornik,et al.  Introduction to arules — Mining Association Rules and Frequent Item Sets , 2006 .

[159]  Shinya Kikuchi,et al.  Intelligent isolated intersection , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[160]  Philip Resnik,et al.  Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation , 2010, EMNLP.

[161]  Eric J Miller,et al.  Collecting Social Network Data to Study Social Activity-Travel Behavior: An Egocentric Approach , 2008 .

[162]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[163]  Clay Shirky The Political Power of Social Media , 2010 .

[164]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[165]  Roberto Frias,et al.  Twitter event detection: combining wavelet analysis and topic inference summarization , 2011 .

[166]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[167]  Hanghang Tong,et al.  Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network , 2016 .

[168]  Nuno Vasconcelos,et al.  Latent Dirichlet Allocation Models for Image Classification , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[169]  Jennifer S. Evans-Cowley,et al.  Microparticipation with Social Media for Community Engagement in Transportation Planning , 2012 .

[170]  Yu Liu,et al.  The promises of big data and small data for travel behavior (aka human mobility) analysis , 2016, Transportation research. Part C, Emerging technologies.

[171]  Hyoshin Park,et al.  Real-time prediction of secondary incident occurrences using vehicle probe data , 2016 .

[172]  홍원기,et al.  A Flow-based Method for Abnormal Network Traffic Detection , 2004 .

[173]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[174]  Kai Yuan,et al.  Analysis of urban freeway traffic flow characteristics based on frequent pattern tree , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[175]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[176]  Anup K. Ghosh,et al.  Detecting anomalous and unknown intrusions against programs , 1998, Proceedings 14th Annual Computer Security Applications Conference (Cat. No.98EX217).

[177]  Ana-Maria Popescu,et al.  Detecting controversial events from twitter , 2010, CIKM.

[178]  Patrick Tracy McGowen,et al.  Evaluating the Potential To Predict Activity Types from GPS and GIS Data , 2007 .

[179]  Yu Cui Behavior-based Traveler Classification Using High-Resolution Connected Vehicles Trajectories and Land Use Data , 2016 .

[180]  Jun Ding,et al.  Multi-modal traffic signal control with priority, signal actuation and coordination , 2014 .

[181]  Bonghee Hong,et al.  Congestion pattern model for predicting short-term traffic decongestion times , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[182]  Sheng Tang,et al.  A density-based method for adaptive LDA model selection , 2009, Neurocomputing.

[183]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[184]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[185]  Helbing,et al.  Congested traffic states in empirical observations and microscopic simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[186]  A. Khattak,et al.  Travel behavior in neo-traditional neighborhood developments: A case study in USA , 2005 .

[187]  Ming Ni,et al.  Using Social Media to Predict Traffic Flow under Special Event Conditions , 2013 .

[188]  Kurt Hornik,et al.  Support Vector Machines in R , 2006 .

[189]  Christian Rohrdantz,et al.  Getting there first : real-time detection of real-world incidents on Twitter , 2012 .

[190]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[191]  Martin Raubal,et al.  Correlating mobile phone usage and travel behavior - A case study of Harbin, China , 2012, Comput. Environ. Urban Syst..

[192]  Ling Bian,et al.  From traces to trajectories: How well can we guess activity locations from mobile phone traces? , 2014 .

[193]  Raymond T. Ng,et al.  Finding Intensional Knowledge of Distance-Based Outliers , 1999, VLDB.

[194]  Zbigniew Smoreda,et al.  Unravelling daily human mobility motifs , 2013, Journal of The Royal Society Interface.

[195]  Farnoush Banaei Kashani,et al.  Discovering patterns in traffic sensor data , 2011, IWGS '11.

[196]  Prabhakar Raghavan,et al.  A Linear Method for Deviation Detection in Large Databases , 1996, KDD.

[197]  H. Aarts,et al.  Habits as knowledge structures: automaticity in goal-directed behavior. , 2000, Journal of personality and social psychology.

[198]  Chin-Liang Chang,et al.  Finding Prototypes For Nearest Neighbor Classifiers , 1974, IEEE Transactions on Computers.

[199]  Marco Balduini,et al.  Tracking Movements and Attention of Crowds in Real Time Analysing Social Streams The case of the Open Ceremony of London 2012 , 2012 .

[200]  Georg Carle,et al.  Traffic Anomaly Detection Using K-Means Clustering , 2007 .

[201]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[202]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[203]  Yan Huang,et al.  A Decision Tree Based Classification Model to Automate Trip Purpose Derivation , 2005, ISCA International Conference on Computer Applications in Industry and Engineering.