Cool, Luminous, and Highly Variable Stars in the Magellanic Clouds from ASAS-SN: Implications for Thorne–Żytkow Objects and Super-asymptotic Giant Branch Stars

Stars with unusual properties can provide a wealth of information about rare stages of stellar evolution and exotic physics. However, determining the true nature of peculiar stars is often difficult. In this work, we conduct a systematic search for cool and luminous stars in the Magellanic Clouds with extreme variability, motivated by the properties of the unusual Small Magellanic Cloud star and Thorne–Żytkow Object (TŻO) candidate HV 2112. Using light curves from ASAS-SN, we identify 38 stars with surface temperatures T < 4800 K, luminosities (L/L⊙) > 4.3, variability periods >400 days, and variability amplitudes ΔV > 2.5 mag. Eleven of these stars possess the distinctive double-peaked light-curve morphology of HV 2112. We use the pulsation properties and derived occurrence rates for these 12 objects to constrain their nature. From comparisons to stellar populations and models, we find that one star may be a red supergiant with large-amplitude pulsations. For the other 11 stars, we derive current masses of ∼5–10 M⊙, below the theoretical minimum mass of ∼15 M⊙ for TŻOs to be stable, casting doubt on this interpretation. Instead, we find that the temperatures, luminosities, mass-loss rates (MLRs), and periods of these stars are consistent with predictions for super-asymptotic giant branch (s-AGB) stars that have begun carbon burning but have not reached the superwind phase. We infer lifetimes in this phase of ∼(1–7) × 104 yr, also consistent with an s-AGB interpretation. If confirmed, these objects would represent the first identified population of s-AGB stars, illuminating the transition between low- and high-mass stellar evolution.

[1]  C. Kochanek,et al.  Beyond Gaia: Asteroseismic Distances of M Giants Using Ground-based Transient Surveys , 2020, The Astronomical Journal.

[2]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars – VII. Contact binaries are different above and below the Kraft break , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars VI: an all-sky sample of δ Scuti stars , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars – V. Variables in the Southern hemisphere , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars – IV. Periodic variables in the APOGEE survey , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Percy ASAS-SN Observations of the Pulsation of some R Coronae Borealis (RCB) Stars , 2019, 1903.05166.

[7]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[8]  A. Piro,et al.  Slowing the spins of stellar cores , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  T Jayasinghe,et al.  The ASAS-SN catalogue of variable stars III: variables in the southern TESS continuous viewing zone , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  S. Höfner,et al.  Mass loss of stars on the asymptotic giant branch , 2018 .

[11]  T Jayasinghe,et al.  The ASAS-SN Catalog of Variable Stars II: Uniform Classification of 412,000 Known Variables , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  J. Prieto,et al.  An all-sky search for R Coronae Borealis stars in ASAS-SN , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  B. Davies,et al.  A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112 , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  P. McMillan,et al.  Gaia DR2 Confirms that Candidate Thorne–Żytkow Object HV 2112 is in the Small Magellanic Cloud , 2018, 1804.10192.

[15]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[16]  A. Helmi,et al.  Gaia Data Release 2Kinematics of globular clusters and dwarfgalaxies around the Milky Way , 2018, 1804.09381.

[17]  P. Crowther,et al.  The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited , 2018, 1804.06417.

[18]  S. Kulkarni,et al.  Variability of Red Supergiants in M31 from the Palomar Transient Factory , 2018, 1803.09934.

[19]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.

[20]  A. Subramaniam,et al.  Photometric metallicity map of the Small Magellanic Cloud , 2018, 1801.03403.

[21]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[22]  Moo-Keon Jung,et al.  Evolutionary Models of Red Supergiants: Evidence for A Metallicity-dependent Mixing Length and Implications for Type IIP Supernova Progenitors , 2017, 1711.03965.

[23]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[24]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[25]  J. Lattanzio,et al.  Super-AGB Stars and their Role as Electron Capture Supernova Progenitors , 2017, Publications of the Astronomical Society of Australia.

[26]  H. Neilson,et al.  Period Changes and Evolution in Pulsating Variable Stars , 2016, 1611.03030.

[27]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data , 2016, 1610.02402.

[28]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star , 2016, 1609.01283.

[29]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[30]  A. Zezas,et al.  Star-formation history and X-ray binary populations: the case of the Large Magellanic Cloud , 2016, 1603.08011.

[31]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[32]  J. Prieto,et al.  Almost gone: SN 2008S and NGC 300 2008OT-1 are fainter than their progenitors , 2015, 1511.07393.

[33]  F. Haberl,et al.  High-mass X-ray binaries in the Small Magellanic Cloud ⋆ , 2015, 1511.00445.

[34]  A. Subramaniam,et al.  Photometric metallicity map of the Large Magellanic Cloud , 2015, 1510.05769.

[35]  K. Olsen,et al.  IDENTIFICATION OF A CLASS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS STRUGGLING TO BECOME CARBON STARS IN THE MAGELLANIC CLOUDS , 2015, 1507.07003.

[36]  S. M. Fall,et al.  THE LINK BETWEEN THE FORMATION RATES OF CLUSTERS AND STARS IN GALAXIES , 2015, 1506.08846.

[37]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[38]  K. Volk,et al.  Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud , 2015, 1505.04499.

[39]  J. Lattanzio,et al.  Super and massive AGB stars - IV. Final fates - Initial to final mass relation , 2014, 1410.5431.

[40]  C. Tout,et al.  HV2112, a Thorne-Zytkow object or a super asymptotic giant branch star , 2014, 1406.6064.

[41]  N. Morrell,et al.  Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud , 2014, Proceedings of the International Astronomical Union.

[42]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[43]  J. Lattanzio,et al.  Super and massive AGB stars – III. Nucleosynthesis in metal-poor and very metal-poor stars – Z = 0.001 and 0.0001 , 2014, 1403.5054.

[44]  J. Lattanzio,et al.  Super and massive AGB stars - II. Nucleosynthesis and yields - Z = 0.02, 0.008 and 0.004 , 2013, 1310.2614.

[45]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[46]  Oded Papish,et al.  Ejecting the envelope of red supergiant stars with jets launched by an inspiraling neutron star , 2013, 1309.3925.

[47]  R. Townsend,et al.  GYRE: An open-source stellar oscillation code based on a new Magnus Multiple Shooting Scheme , 2013, 1308.2965.

[48]  H. Jones,et al.  A catalogue of bright (K < 9) M dwarfs , 2013, 1308.0501.

[49]  Asu,et al.  ADVANCED BURNING STAGES AND FATE OF 8–10 M☉ STARS , 2013, 1306.2030.

[50]  A. Walker,et al.  The Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud , 2013, 1306.4802.

[51]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[52]  R. Kudritzki,et al.  THE TEMPERATURES OF RED SUPERGIANTS , 2013, 1302.2674.

[53]  E. Solano,et al.  SVO Filter Profile Service Version 1.0 , 2012 .

[54]  B. Jiang,et al.  THE PERIOD–LUMINOSITY RELATION OF RED SUPERGIANT STARS IN THE SMALL MAGELLANIC CLOUD , 2012, 1205.1275.

[55]  Kathryn F. Neugent,et al.  YELLOW AND RED SUPERGIANTS IN THE LARGE MAGELLANIC CLOUD , 2012, 1202.4225.

[56]  R. Poleski,et al.  The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XIII. Long-Period Variables in the Small Magellanic Cloud , 2011, 1109.1143.

[57]  R. Indebetouw,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS , 2011, 1106.5026.

[58]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[59]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[60]  Z. T. Spetsieri,et al.  RED SUPERGIANT STARS IN THE LARGE MAGELLANIC CLOUD. I. THE PERIOD–LUMINOSITY RELATION , 2010, Astronomy & Astrophysics.

[61]  E. Josselin,et al.  The mass-loss rates of red supergiants and the de Jager prescription , 2010, 1010.5369.

[62]  T. Lebzelter The shapes of light curves of Mira‐type variables , 2010, 1010.2672.

[63]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[64]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[65]  M. Cantiello,et al.  EVOLUTION OF MASSIVE STARS WITH PULSATION-DRIVEN SUPERWINDS DURING THE RED SUPERGIANT PHASE , 2010, 1005.4925.

[66]  D. Maoz,et al.  The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.

[67]  Lionel Siess,et al.  Evolution of massive AGB stars - III. the thermally pulsing super-AGB phase , 2010 .

[68]  J. Lattanzio,et al.  Super asymptotic giant branch stars. I – Evolution code comparison , 2010 .

[69]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[70]  M. Groenewegen,et al.  Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants , 2009, 0908.3087.

[71]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[72]  D. Zaritsky,et al.  THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD , 2009, 0908.1422.

[73]  C. Leitherer,et al.  VARIABLE EVOLVED STARS AND YOUNG STELLAR OBJECTS DISCOVERED IN THE LARGE MAGELLANIC CLOUD USING THE SAGE SURVEY , 2008, 0811.0408.

[74]  Christopher S. Kochanek,et al.  A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS , 2008, 0809.0510.

[75]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[76]  S. Cristallo,et al.  Molecular Opacities for Low-Mass Metal-poor AGB Stars Undergoing the Third Dredge-up , 2007, 0706.2100.

[77]  N. Langer,et al.  The Supernova Channel of Super-AGB Stars , 2007, 0705.4643.

[78]  K. Olsen,et al.  Late-Type Red Supergiants: Too Cool for the Magellanic Clouds? , 2007, 0705.3431.

[79]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[80]  H. J. Habing,et al.  AGB stars in the Magellanic Clouds II. The rate of star formation across the LMC , 2005, astro-ph/0509881.

[81]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[82]  A. Zijlstra,et al.  An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005, astro-ph/0504379.

[83]  R. Kurucz,et al.  Is missing Fe I opacity in stellar atmospheres a significant problem , 2004 .

[84]  D. Zaritsky,et al.  The Star Formation History of the Small Magellanic Cloud , 2003, astro-ph/0312100.

[85]  P. Massey,et al.  The Evolution of Massive Stars. I. Red Supergiants in the Magellanic Clouds , 2003, astro-ph/0309272.

[86]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[87]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[88]  R. Hilditch,et al.  Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance , 2003, astro-ph/0411672.

[89]  P. Whitelock Luminosities of AGB Variables , 2002, astro-ph/0207168.

[90]  P. Marigo Asymptotic Giant Branch evolution at varying surface C/O ratio: effects of changes in molecular opacities , 2002, astro-ph/0203036.

[91]  E. Grebel,et al.  The Magellanic Clouds Photomtric Survey: The Small Magellanic Cloud Stellar Catalog and Extinction Map , 2001, astro-ph/0110665.

[92]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[93]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[94]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[95]  D. Zucker,et al.  Is U Aquarii a Thorne-Żytkow Object? , 1999 .

[96]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[97]  B. Peterson,et al.  The MACHO Project Large Magellanic Cloud Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo , 1996, astro-ph/9606165.

[98]  Chris L. Fryer,et al.  The Dynamics and Outcomes of Rapid Infall onto Neutron Stars , 1995, astro-ph/9509144.

[99]  M. Rees,et al.  The evolution and final fate of massive Thorne-Żytkow objects , 1995 .

[100]  I. Iben,et al.  On the formation and evolution of super-asymptotic giant branch stars with cores processed by carbon burning. 1: SPICA to Antares , 1994 .

[101]  J. Hills,et al.  A new way to make Thorne-Zytkow objects , 1994 .

[102]  R. Cannon Massive Thorne–Żytkow objects: structure and nucleosynthesis , 1993 .

[103]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[104]  R. Cannon,et al.  The Structure and Evolution of Thorne-Zytkow Objects , 1992 .

[105]  V. Smith,et al.  On the occurrence of enhanced lithium in Magellanic Cloud red giants , 1990 .

[106]  M. Feast,et al.  A period–luminosity–colour relation for Mira variables , 1989 .

[107]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[108]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[109]  M. Bessell,et al.  Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium , 1983 .

[110]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[111]  I. Glass Infrared observations of late-type supergiants in the Magellanic Clouds , 1979 .

[112]  R. Taam,et al.  Double core evolution. I. A 16 M/sub sun/ star with a 1 M/sub sun/ neutron-star companion , 1978 .

[113]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[114]  K. Thorne,et al.  Stars with degenerate neutron cores. I. structure of equilibrium models , 1977 .

[115]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[116]  K. Thorne,et al.  Red giants and supergiants with degenerate neutron cores , 1975 .

[117]  P. C. Keenan,et al.  Revised Catalog of Spectra of Mira Variables of Types ME and Se , 1974 .

[118]  N. N. Kireeva,et al.  General catalogue of variable stars: Version GCVS 5.1 , 2017 .

[119]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[120]  I. Andronov,et al.  Variability of long-period pulsating stars. III. Changes in the parameters of humps at the ascending branch , 2007 .

[121]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[122]  A. Sprague,et al.  Thermal emission spectroscopy and analysis of dust, disks, and regoliths : proceedings of a meeting held at the Lunar and Planetary Institute at Houston, Texas, USA 28-30 April 1999 , 2000 .

[123]  Garrett T. Biehle Observational prospects for massive stars with degenerate neutron cores , 1994 .

[124]  A. G. W. Cameron,et al.  Lithium and the s-process in red-giant stars , 1971 .

[125]  S. Gaposchkin,et al.  Variable stars in the Small Magellanic Cloud , 1966 .

[126]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[127]  A. Cameron Origin of Anomalous Abundances of the Elements in Giant Stars. , 1955 .

[128]  T. Maccarone,et al.  UvA-DARE (Digital Academic Repository) Large proper motion of the Thorne–Żytkow object candidate HV 2112 reveals its likely nature as foreground Galactic S-star , 2022 .