Conversion of coral sand to calcium phosphate as a drug delivery system for bone regeneration

University of Technology Sydney. Department of Physics and Advanced Materials, Faculty of Science.

[1]  P. Reddy,et al.  Recent Advances in Novel Drug Delivery Systems , 2003 .

[2]  R. Lanza,et al.  Transplantation of encapsulated cells and tissues. , 1997, Surgery.

[3]  A. Meunier,et al.  Natural coral as a substrate for fibroblastic growth in vitro , 1993 .

[4]  W. Paul,et al.  Development of porous spherical hydroxyapatite granules: application towards protein delivery , 1999, Journal of materials science. Materials in medicine.

[5]  N. K. Harakas Demineralized bone-matrix-induced osteogenesis. , 1984, Clinical orthopaedics and related research.

[6]  N. Sims,et al.  Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. , 2008, Seminars in cell & developmental biology.

[7]  D. S. Metsger,et al.  Tricalcium phosphate ceramic--a resorbable bone implant: review and current status. , 1982, Journal of the American Dental Association.

[8]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[9]  J. H. de Groot,et al.  Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci , 1990 .

[10]  M. Rogers,et al.  Nitrogen‐Containing Bisphosphonates Inhibit the Mevalonate Pathway and Prevent Post‐Translational Prenylation of GTP‐Binding Proteins, Including Ras , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[11]  M. Kumar,et al.  Use of Antibiotic-Loaded Polymethyl Methacrylate Beads in the Management of Musculoskeletal Sepsis — A Retrospective Study , 2003, Journal of orthopaedic surgery.

[12]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[13]  F. Bakker,et al.  Properties of calcium phosphate ceramics in relation to their in vivo behavior. , 2000, The Journal of trauma.

[14]  S. Teitelbaum,et al.  Recruitment of osteoclast precursors by purified bone matrix constituents , 1982, The Journal of cell biology.

[15]  M. Gazzano,et al.  Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. , 2008, Biomaterials.

[16]  J. Sangleboeuf,et al.  Gentamicin-loaded calcium carbonate materials: comparison of two drug-loading modes. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  T Kitsugi,et al.  Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[18]  J. Chou,et al.  Bisphosphonate determination using 1H‐NMR spectroscopy for biomedical applications , 2009, Journal of tissue engineering and regenerative medicine.

[19]  J. Keller,et al.  Anterior cervical discectomy and interbody fusion. An experimental study using a synthetic tricalcium phosphate. , 1979, Journal of neurosurgery.

[20]  H. Nakagawa,et al.  Inhibitory effects of mevastatin and a geranylgeranyl transferase I inhibitor (GGTI-2166) on mononuclear osteoclast formation induced by receptor activator of NFκB ligand (RANKL) or tumor necrosis factor-α (TNF-α) , 2005 .

[21]  J. Fages,et al.  Biotechnology, material sciences and bone repair , 1998, European Journal of Orthopaedic Surgery & Traumatology.

[22]  S. Narumiya,et al.  The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. , 1995, Journal of cell science.

[23]  V. Jansson,et al.  Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. , 1994, Acta orthopaedica Scandinavica.

[24]  M. Vallet‐Regí,et al.  Biocompatibility and in vivo gentamicin release from bioactive sol-gel glass implants. , 2002, Journal of biomedical materials research.

[25]  B. Wesslén,et al.  Adhesion of staphylococci to chemically modified and native polymers, and the influence of preadsorbed fibronectin, vitronectin and fibrinogen. , 1993, Biomaterials.

[26]  P. Meunier,et al.  Long‐Term Strontium Ranelate Administration in Monkeys Preserves Characteristics of Bone Mineral Crystals and Degree of Mineralization of Bone , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[27]  R. Elson,et al.  Antibiotic-loaded acrylic cement. , 1977, The Journal of bone and joint surgery. British volume.

[28]  C. Schultz,et al.  Bacterial adhesion measurements on soft contact lenses using a Modified Vortex Device and a Modified Robbins Device , 1995, Journal of Industrial Microbiology.

[29]  C. Rey,et al.  Chemical Diversity of Apatites , 2006 .

[30]  C. Rubin,et al.  Biology of bone and how it orchestrates the form and function of the skeleton , 2001, European Spine Journal.

[31]  M. Barbosa,et al.  Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications , 2006, Journal of materials science. Materials in medicine.

[32]  I H Kalfas,et al.  Principles of bone healing. , 2001, Neurosurgical focus.

[33]  B. Kasemo,et al.  2. The Biomaterial-Tissue Interface and Its Analogues in Surface Science and Technology , 1991 .

[34]  O. R. Anderson,et al.  Biology of the foraminifera , 1991 .

[35]  P. Marie,et al.  The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. , 1996, Bone.

[36]  G. Guillemin,et al.  The use of coral as a bone graft substitute. , 1987, Journal of biomedical materials research.

[37]  M. Yoshinari,et al.  Effect of Bisphosphonate Immobilization of Apatite Coated Titanium Web on Trabecular Bone Response , 2009 .

[38]  X. Liu,et al.  The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. , 2009, Biomaterials.

[39]  Abdelwahab Omri,et al.  Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. , 2004, The Journal of antimicrobial chemotherapy.

[40]  R. Jahn,et al.  Rab3D Regulates a Novel Vesicular Trafficking Pathway That Is Required for Osteoclastic Bone Resorption , 2005, Molecular and Cellular Biology.

[41]  S. Dorozhkin A review on the dissolution models of calcium apatites , 2002 .

[42]  E. Pieterman,et al.  Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. , 1999, Biochemical and biophysical research communications.

[43]  R. Baron,et al.  In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. , 2002, European journal of pharmacology.

[44]  M. Sivakumar,et al.  Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. , 2002, Biomaterials.

[45]  M. Karsdal,et al.  Osteoclasts prefer aged bone , 2007, Osteoporosis International.

[46]  J A Planell,et al.  Calcium phosphate cements as bone drug delivery systems: a review. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[47]  David Steven Scott,et al.  Use of Vancomycin and Tobramycin Polymethylmethacrylate Impregnated Beads in the Management of Chronic Osteomyelitis , 1988, Drug intelligence & clinical pharmacy.

[48]  D. Bouchier‐Hayes,et al.  Development of resistant strains of Staphylococcus epidermidis on gentamicin-loaded bone cement in vivo. , 2002, The Journal of bone and joint surgery. British volume.

[49]  N. Watts,et al.  Bisphosphonates in the treatment of osteoporosis. , 2012, Endocrinology and metabolism clinics of North America.

[50]  Michael Jarcho,et al.  Calcium phosphate ceramics as hard tissue prosthetics. , 1981, Clinical orthopaedics and related research.

[51]  P. Marie,et al.  Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. , 2004, Metabolism: clinical and experimental.

[52]  A. Pennings,et al.  Use of porous biodegradable polymer implants in meniscus reconstruction. 1) Preparation of porous biodegradable polyurethanes for the reconstruction of meniscus lesions , 1990 .

[53]  R. Doremus,et al.  Direct electron microscopy studies of the bone-hydroxylapatite interface. , 1984, Journal of biomedical materials research.

[54]  H. Fleisch,et al.  Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. , 1996, Endocrinology.

[55]  J. Pasteris,et al.  A mineralogical perspective on the apatite in bone , 2005 .

[56]  J. Hollinger,et al.  The integrated processes of hard tissue regeneration with special emphasis on fracture healing. , 1996, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[57]  L. Hench,et al.  The sol-gel process , 1990 .

[58]  K. Ho,et al.  Liposomes-coated hydroxyapatite and tricalcium phosphate implanted in the mandibular bony defect of miniature swine. , 1997, The Kaohsiung journal of medical sciences.

[59]  Manivannan Rangasamy,et al.  R ECENT ADVANCES IN NOVEL DRUG DELIVERY SYSTEMS , 2010 .

[60]  L. Montanaro,et al.  Presence and expression of collagen adhesin gene (cna) and slime production in Staphylococcus aureus strains from orthopaedic prosthesis infections. , 1999, Biomaterials.

[61]  R. Doremus,et al.  Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. , 1977, Journal of bioengineering.

[62]  Ayako Oyane,et al.  Preparation and assessment of revised simulated body fluids. , 2003, Journal of biomedical materials research. Part A.

[63]  James Ra,et al.  The histologic evaluation of the implant interface with heterograft and allograft materials--an eight-month autopsy report, Part II. , 1991 .

[64]  N. Takahashi,et al.  S 12911‐2 Inhibits Osteoclastic Bone Resorption In Vitro , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[65]  F. Saltel,et al.  Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. , 2008, Bone.

[66]  J. O’Gara,et al.  Staphylococcus epidermidis biofilms: importance and implications. , 2001, Journal of medical microbiology.

[67]  P. Zambelli,et al.  Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. , 2005, Bone.

[68]  H. Ohgushi,et al.  Bone formation process in porous calcium carbonate and hydroxyapatite. , 1992, Journal of biomedical materials research.

[69]  M. Bohner Physical and chemical aspects of calcium phosphates used in spinal surgery , 2001, European Spine Journal.

[70]  I. Tung In vitro drug release of antibiotic-loaded porous hydroxyapatite cement. , 1995, Artificial cells, blood substitutes, and immobilization biotechnology.

[71]  D. Kimmel Mechanism of Action, Pharmacokinetic and Pharmacodynamic Profile, and Clinical Applications of Nitrogen-containing Bisphosphonates , 2007, Journal of dental research.

[72]  Xing‐dong Zhang,et al.  Dissolution and mineralization behaviors of HA coatings. , 2003, Biomaterials.

[73]  R Z LeGeros,et al.  Calcium Phosphate Materials in Restorative Dentistry: a Review , 1988, Advances in dental research.

[74]  Meital Zilberman,et al.  Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. , 2007, Journal of biomedical materials research. Part A.

[75]  I A Silver,et al.  Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. , 1988, Experimental cell research.

[76]  P. Tengvall,et al.  Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. , 2004, Biomaterials.

[77]  Besim Ben-Nissan,et al.  Natural bioceramics: from coral to bone and beyond , 2003 .

[78]  Richard G. Buckles Biomaterials for drug delivery systems. , 1983, Journal of biomedical materials research.

[79]  R. Reis,et al.  Crystallinity and structural changes in HA plasma-sprayed coatings induced by cyclic loading in physiological media , 1996 .

[80]  S. Sōmiya Historical developments of hydrothermal works in Japan, especially in ceramic science , 2006 .

[81]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[82]  R. Elson,et al.  Antibiotic-loaded acrylic cement: current concepts. , 1984, Clinical orthopaedics and related research.

[83]  M. Epple,et al.  Controlled release of gentamicin from biomimetic calcium phosphate in vitro. Comparison of four different incorporation methods , 2004 .

[84]  T. Webster,et al.  Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. , 2009, Acta biomaterialia.

[85]  P. Marie Strontium ranelate: a novel mode of action optimizing bone formation and resorption , 2004, Osteoporosis International.

[86]  D. Lew,et al.  The use of tobramycin-impregnated polymethylmethacrylate beads in the treatment of osteomyelitis of the mandible: report of three cases. , 1993, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[87]  Harakas Nk Demineralized bone-matrix-induced osteogenesis. , 1984 .

[88]  Gowen,et al.  Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. , 1989, The Journal of clinical investigation.

[89]  W. Higuchi,et al.  Mechanism for the Retardation of the Acid Dissolution Rate of Hydroxyapatite by Strontium , 1973, Journal of dental research.

[90]  M. Yoshinari,et al.  The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. , 2005, Biomaterials.

[91]  W. C. O'Neill,et al.  The fallacy of the calcium-phosphorus product. , 2007, Kidney international.

[92]  P. Marie Strontium ranelate: a physiological approach for optimizing bone formation and resorption. , 2006, Bone.

[93]  A. Lloyd,et al.  Bacterial adhesion to bisphosphonate coated hydroxyapatite , 2005, Journal of materials science. Materials in medicine.

[94]  R. Misra,et al.  Biomaterials , 2008 .

[95]  D. Williams,et al.  Biocompatibility of tissue analogs , 1985 .

[96]  L G Griffith,et al.  Who's got pull around here? Cell organization in development and tissue engineering , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Camesano,et al.  Nanoscale Investigation of Pathogenic Microbial Adhesion to a Biomaterial , 2004, Applied and Environmental Microbiology.

[98]  M. Aebi,et al.  Posterolateral and Anterior Interbody Spinal Fusion Models in the Sheep , 2000, Clinical orthopaedics and related research.

[99]  R M Pilliar,et al.  Porous-surfaced metallic implants for orthopedic applications. , 1987, Journal of biomedical materials research.

[100]  J. Reginster Strontium ranelate in osteoporosis. , 2002, Current pharmaceutical design.

[101]  R. Nasca,et al.  Synthetic biomaterials for spinal fusion. , 1989, Orthopedics.

[102]  T. Higuchi MECHANISM OF SUSTAINED-ACTION MEDICATION. THEORETICAL ANALYSIS OF RATE OF RELEASE OF SOLID DRUGS DISPERSED IN SOLID MATRICES. , 1963, Journal of pharmaceutical sciences.

[103]  G. H. Nancollas,et al.  Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. , 2006, Bone.

[104]  P. Lehenkari,et al.  Alendronate Disturbs Vesicular Trafficking in Osteoclasts , 2001, Calcified Tissue International.

[105]  Stephen Mann,et al.  Biomimetic Hydroxyapatite–Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties , 2007 .

[106]  Y. Missirlis,et al.  Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. , 2004, European cells & materials.

[107]  M. Hochberg Bisphosphonates in the treatment of osteoporosis. , 1997, Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases.

[108]  R. Wuhrer,et al.  Conversion of coral sand to calcium phosphate for biomedical applications , 2007 .

[109]  A. L. Oliveira,et al.  Biomimetic Ca-P coatings incorporating bisphosphonates produced on starch-based degradable biomaterials. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[110]  J. V. van Horn,et al.  Gentamicin-loaded bone cement with clindamycin or fusidic acid added: biofilm formation and antibiotic release. , 2005, Journal of biomedical materials research. Part A.

[111]  S. Dorozhkin Calcium Orthophosphate Cements and Concretes , 2009, Materials.

[112]  R. James,et al.  The histologic evaluation of the implant interface with heterograft and allograft materials--an eight-month autopsy report, Part II. , 1991, The Journal of oral implantology.

[113]  A. Parfitt Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. , 2002, Bone.

[114]  D. Roy,et al.  Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange , 1974, Nature.

[115]  J. Chevalier,et al.  A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vitro release validation , 2008, Journal of materials science. Materials in medicine.

[116]  S. Radin,et al.  Calcium phosphate ceramic coatings as carriers of vancomycin. , 1997, Biomaterials.

[117]  R Z LeGeros,et al.  Biodegradation and bioresorption of calcium phosphate ceramics. , 1993, Clinical materials.

[118]  F. Rauch,et al.  Bone morphogenetic proteins in orthopedics: from basic science to clinical practice. , 1999, Orthopedics.

[119]  A. Delgado,et al.  In vitro-in vivo characterization of gentamicin bone implants. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[120]  J. Calhoun,et al.  Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. , 1993, Clinical orthopaedics and related research.

[121]  T. D. Villiers Bone health and osteoporosis in postmenopausal women. , 2009 .

[122]  W. Higuchi,et al.  Mechanism of hydroxyapatite dissolution. Synergistic effects of solution fluoride, strontium, and phosphate , 1974 .

[123]  S. Valenzuela,et al.  Targeting and Dissolution Characteristics of Bone Forming and Antibacterial Drugs by Harnessing the Structure of Microspherical Shells from Coral Beach Sand , 2011 .

[124]  A. Mikos,et al.  Injectable biodegradable materials for orthopedic tissue engineering. , 2000, Biomaterials.

[125]  C. Klein,et al.  Biodegradation behavior of various calcium phosphate materials in bone tissue. , 1983, Journal of biomedical materials research.